This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381988 #17 Mar 14 2025 09:00:43 %S A381988 1,2,15,313,10773,510981,30876463,2267990159,196204786025, %T A381988 19539828320905,2201822913234771,276969947671828995, %U A381988 38473403439454795837,5849221857618942870029,966078641687956464576119,172251173569831561500070711,32975613823747758363130520529,6746227557293225645352382744593 %N A381988 E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293. %F A381988 Let F(x) be the e.g.f. of A377526. F(x) = B(x*A(x)) = exp( 1/4 * Sum_{k>=1} binomial(4*k,k) * (x*A(x))^k/k ). %F A381988 a(n) = n! * Sum_{k=0..n} (k+1)^(n-k) * A002294(k)/(n-k)!. %o A381988 (PARI) a(n) = n!*sum(k=0, n, (k+1)^(n-k)*binomial(5*k+1, k)/((5*k+1)*(n-k)!)); %Y A381988 Cf. A381987, A381989. %Y A381988 Cf. A002293, A002294, A346647, A377526. %K A381988 nonn %O A381988 0,2 %A A381988 _Seiichi Manyama_, Mar 12 2025