A381990 Number of integer partitions of n that cannot be partitioned into a set (or multiset) of sets with distinct sums.
0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 127, 168, 208, 267, 343, 431, 536, 676, 836, 1045, 1283, 1582, 1949, 2395, 2895, 3549, 4298, 5216, 6281, 7569, 9104, 10953, 13078, 15652, 18627, 22207, 26325, 31278, 37002, 43708, 51597, 60807, 71533, 84031
Offset: 0
Keywords
Examples
The partition y = (3,3,3,2,2,1,1,1,1) has only one multiset partition into a set of sets, namely {{1},{3},{1,2},{1,3},{1,2,3}}, but this does not have distinct sums, so y is counted under a(17). The a(2) = 1 through a(8) = 9 partitions: (11) (111) (22) (2111) (33) (2221) (44) (1111) (11111) (222) (4111) (2222) (3111) (22111) (5111) (21111) (31111) (22211) (111111) (211111) (41111) (1111111) (221111) (311111) (2111111) (11111111)
Crossrefs
Twice-partitions of this type are counted by A279785.
MM-numbers of these multiset partitions (strict blocks with distinct sum) are A382201.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]==0&]],{n,0,10}]
Extensions
a(21)-a(50) from Bert Dobbelaere, Mar 29 2025