This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381992 #14 Mar 29 2025 13:49:30 %S A381992 1,1,1,2,3,5,6,9,13,17,25,33,44,59,77,100,134,170,217,282,360,449,571, %T A381992 719,899,1122,1391,1727,2136,2616,3209,3947,4800,5845,7094,8602,10408, %U A381992 12533,15062,18107,21686,25956,30967,36936,43897,52132,61850,73157,86466,101992,120195 %N A381992 Number of integer partitions of n that can be partitioned into sets with distinct sums. %C A381992 Also the number of integer partitions of n whose Heinz number belongs to A382075 (can be written as a product of squarefree numbers with distinct sums of prime indices). %e A381992 There are 6 ways to partition (3,2,2,1) into sets: %e A381992 {{2},{1,2,3}} %e A381992 {{1,2},{2,3}} %e A381992 {{1},{2},{2,3}} %e A381992 {{2},{2},{1,3}} %e A381992 {{2},{3},{1,2}} %e A381992 {{1},{2},{2},{3}} %e A381992 Of these, 3 have distinct block sums: %e A381992 {{2},{1,2,3}} %e A381992 {{1,2},{2,3}} %e A381992 {{1},{2},{2,3}} %e A381992 so (3,2,2,1) is counted under a(8). %e A381992 The a(1) = 1 through a(8) = 13 partitions: %e A381992 (1) (2) (3) (4) (5) (6) (7) (8) %e A381992 (2,1) (3,1) (3,2) (4,2) (4,3) (5,3) %e A381992 (2,1,1) (4,1) (5,1) (5,2) (6,2) %e A381992 (2,2,1) (3,2,1) (6,1) (7,1) %e A381992 (3,1,1) (4,1,1) (3,2,2) (3,3,2) %e A381992 (2,2,1,1) (3,3,1) (4,2,2) %e A381992 (4,2,1) (4,3,1) %e A381992 (5,1,1) (5,2,1) %e A381992 (3,2,1,1) (6,1,1) %e A381992 (3,2,2,1) %e A381992 (3,3,1,1) %e A381992 (4,2,1,1) %e A381992 (3,2,1,1,1) %t A381992 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A381992 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A381992 Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#], And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]],{n,0,10}] %Y A381992 More on set multipartitions: A089259, A116540, A270995, A296119, A318360. %Y A381992 Twice-partitions of this type are counted by A279785. %Y A381992 Multiset partitions of this type are counted by A381633, zeros of A381634. %Y A381992 For constant instead of strict blocks see A381717, A381636, A381635, A381716, A381991. %Y A381992 Normal multiset partitions of this type are counted by A381718, see A116539. %Y A381992 The complement is counted by A381990, ranked by A381806. %Y A381992 These partitions are ranked by A382075. %Y A381992 For distinct blocks instead of sums we have A382077, complement A382078. %Y A381992 For a unique choice we have A382079. %Y A381992 A000041 counts integer partitions, strict A000009. %Y A381992 A050320 counts multiset partitions of prime indices into sets. %Y A381992 A050326 counts multiset partitions of prime indices into distinct sets. %Y A381992 A265947 counts refinement-ordered pairs of integer partitions. %Y A381992 A382201 lists MM-numbers of sets with distinct sums. %Y A381992 Cf. A002846, A047966, A213427, A279786, A299202, A317142, A381870. %Y A381992 Cf. A293243, A293511, A358914, A381078, A381441, A381454. %K A381992 nonn %O A381992 0,4 %A A381992 _Gus Wiseman_, Mar 16 2025 %E A381992 a(21)-a(50) from _Bert Dobbelaere_, Mar 29 2025