This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381993 #13 Mar 31 2025 21:54:22 %S A381993 0,0,0,1,1,5,4,13,13,25,33,54,54,99,124,166,207,295,352,488,591,780, %T A381993 987,1253,1488,1951,2419,2993,3665,4563,5508,6840,8270,10127,12289, %U A381993 14869,17781,21635,25992,31167,37184,44581,53008,63259,75076,89080,105531,124752,146842,173516,204141,239921,281461,329929,385852 %N A381993 Number of integer partitions of n that cannot be partitioned into constant multisets with a common sum. %e A381993 The multiset partition {{2},{2},{1,1},{1,1}} has both properties (constant blocks and common sum), so (2,2,1,1,1,1) is not counted under a(8). We can also use {{2,2},{1,1,1,1}}. %e A381993 The a(3) = 1 through a(8) = 13 partitions: %e A381993 (21) (31) (32) (42) (43) (53) %e A381993 (41) (51) (52) (62) %e A381993 (221) (321) (61) (71) %e A381993 (311) (411) (322) (332) %e A381993 (2111) (331) (431) %e A381993 (421) (521) %e A381993 (511) (611) %e A381993 (2221) (3221) %e A381993 (3211) (3311) %e A381993 (4111) (4211) %e A381993 (22111) (5111) %e A381993 (31111) (32111) %e A381993 (211111) (311111) %t A381993 mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}]; %t A381993 Table[Length[Select[IntegerPartitions[n],Length[Select[Join@@@Tuples[mce/@Split[#]],SameQ@@Total/@#&]]==0&]],{n,0,30}] %Y A381993 Twice-partitions of this type (constant with equal) are counted by A279789. %Y A381993 Multiset partitions of this type are ranked by A326534 /\ A355743. %Y A381993 For distinct instead of equal block-sums we have A381717. %Y A381993 These partitions are ranked by A381871, zeros of A381995. %Y A381993 For strict instead of constant blocks we have A381994, see A381719, A382080. %Y A381993 The strict case is A382076. %Y A381993 Normal multiset partitions of this type are counted by A382204. %Y A381993 A001055 counts factorizations, strict A045778. %Y A381993 A050361 counts factorizations into distinct prime powers, see A381715. %Y A381993 A317141 counts coarsenings of prime indices, refinements A300383. %Y A381993 Cf. A000688, A006171, A047966, A265947, A279784, A381453, A381455, A381635, A381636, A381992. %K A381993 nonn %O A381993 0,6 %A A381993 _Gus Wiseman_, Mar 17 2025 %E A381993 a(31)-a(54) from _Robert Price_, Mar 31 2025