A381994 Number of integer partitions of n that cannot be partitioned into sets with equal sums.
0, 0, 0, 0, 1, 3, 3, 9, 12, 17, 27, 43, 46, 82, 103, 133, 181, 258, 295
Offset: 0
Keywords
Examples
For y = (3,3,1,1) we have {{1,3},{1,3}}, so y is not counted under a(8). For y = (3,2,2,1), although we have {{1,3},{2,2}}, the block {2,2} is not a set, so y is counted under a(8). The a(4) = 1 through a(8) = 12 partitions: (2,1,1) (2,2,1) (4,1,1) (3,2,2) (3,3,2) (3,1,1) (3,1,1,1) (3,3,1) (4,2,2) (2,1,1,1) (2,1,1,1,1) (5,1,1) (6,1,1) (2,2,2,1) (3,2,2,1) (3,2,1,1) (4,2,1,1) (4,1,1,1) (5,1,1,1) (2,2,1,1,1) (2,2,2,1,1) (3,1,1,1,1) (3,2,1,1,1) (2,1,1,1,1,1) (4,1,1,1,1) (2,2,1,1,1,1) (3,1,1,1,1,1) (2,1,1,1,1,1,1)
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]]; Table[Length[Select[IntegerPartitions[n], Length[Select[mps[#], And@@UnsameQ@@@#&&SameQ@@Total/@#&]]==0&]],{n,0,10}]