A381996 Number of non-isomorphic multisets of size n that can be partitioned into a set of sets.
1, 1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 34, 47
Offset: 0
Examples
Differs from A382523 in counting the following under a(12): {1,1,1,1,1,1,2,2,3,3,4,5} with partition {{1},{1,2},{1,3},{1,4},{1,5},{1,2,3}} {1,1,1,1,2,2,2,2,3,3,3,3} with partition {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
Crossrefs
The complement is counted by A292444.
Programs
-
Mathematica
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]; sps[{}]:={{}};sps[set:{i_,_}] := Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort /@ (#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Select[strnorm[n], Select[mps[#], UnsameQ@@#&&And@@UnsameQ@@@#&]!={}&]], {n,0,5}]
Comments