cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382019 Number of zeros (counted with multiplicity) inside and on the unit circle of the polynomial P(n,z) = Sum_{k=0..n} T(n,k)*z^k where T(n,k) = A214292(n,k) is the first differences of rows in Pascal's triangle.

This page as a plain text file.
%I A382019 #26 Mar 25 2025 14:02:23
%S A382019 0,1,2,3,4,5,6,5,6,7,8,9,10,9,10,11,12,13,14,13,14,15,16,17,18,17,18,
%T A382019 19,20,21,22,21,22,23,24,25,26,25,26,27,28,29,30,29,30,31,32,33,34,33,
%U A382019 34,35,36,37,38,37,38,39,40,41,42,41,42,43,44,45,46,45,46,47
%N A382019 Number of zeros (counted with multiplicity) inside and on the unit circle of the polynomial P(n,z) = Sum_{k=0..n} T(n,k)*z^k where T(n,k) = A214292(n,k) is the first differences of rows in Pascal's triangle.
%C A382019 The polynomial is P(n,z) = z^(n+1) - ((z-1)*(z+1)^(n+1) +1)/z.
%C A382019 A root z (real or complex) is in or on the unit circle when its magnitude abs(z) <= 1.
%e A382019 a(4)=4 because P(4,z)= 4 + 5*z -5*z^3 -4*z^4  with 4 roots z1, z2, z2, z4 on the unit circle : z1 = -1, z2 = +1, z3 = -.625000 -.7806247*i, z4 = -.625000 +.7806247*i.
%e A382019 a(6)=6 because P(6,z)= 6 + 14*z +14*z^2 -14*z^4-14*z^5-6z^6  with 6 roots on the unit circle:
%e A382019   z1 = -1,
%e A382019   z2 = +1,
%e A382019   z3 = -.6666666667 - .7453559925*i,
%e A382019   z4 = -.6666666667 + .7453559925*i,
%e A382019   z5 = -.500000000 - .8660254038*i,
%e A382019   z6 = -.500000000 + .8660254038*i.
%p A382019 A382019:=proc(n) local m,y,it:
%p A382019 y:=[fsolve(add((binomial(n+1,k+1)-binomial(n+1,k))*x^k,k=0..n),x,complex)]:it:=0:
%p A382019  for m from 1 to nops(y) do:
%p A382019           if ((Re(y[m]))^2+(Im(y[m]))^2)<=1
%p A382019           then
%p A382019          it:=it+1:else fi:
%p A382019    od: A382019(n):=it:end proc:
%p A382019 seq(A382019(n),n=1..70);
%Y A382019 Cf. A007318, A214292.
%K A382019 nonn
%O A382019 0,3
%A A382019 _Michel Lagneau_, Mar 12 2025