A382035 a(n) is the smallest prime q such that q + prime(n) is of form 10^k or 2*10^k, or 0 if no such prime exists.
0, 7, 5, 3, 89, 7, 3, 181, 977, 71, 1999969, 163, 59, 157, 53, 47, 41, 139, 1933, 29, 127, 199921, 17, 11, 3, 999999999899, 97, 999999893, 19891, 887, 73, 9999999999999999999869, 863, 61, 9851, 1999999999849, 43, 37, 9833, 827, 821, 19, 809, 7, 3, 1801, 1789
Offset: 1
Keywords
Examples
For n=11 (prime(n)=31): For all positive integer k, 10^k-31 is multiple of 3. 200 - 31 = 169 = 13 * 13 2000 - 31 = 1969 = 11 * 179 20000 - 31 = 19969 = 19 * 1051 200000 - 31 = 199969 = 7 * 7 * 7 * 11 * 53 2000000 - 31 = 1999969 is a prime number. thus a(11) = 1999969.
Crossrefs
Cf. A191474 (base 2 version of this sequence).
Programs
-
Mathematica
Table[If[MissingQ[#], 0, # - Prime[i]] &@SelectFirst[Flatten[Table[{10^j, 2 10^j}, {j, 100}]], # > Prime[i] && PrimeQ[# - Prime[i]] &], {i, 1, 47}]
Comments