This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382041 #12 Mar 19 2025 10:39:55 %S A382041 1,0,4,0,4,14,0,4,20,40,0,4,30,70,105,0,4,36,116,196,252,0,4,46,170, %T A382041 350,490,574,0,4,52,236,556,896,1120,1240,0,4,62,310,845,1505,2079, %U A382041 2415,2580,0,4,68,400,1200,2400,3584,4480,4960,5180,0,4,78,494,1670,3626,5910,7842,9162,9822,10108 %N A382041 Triangle read by rows: T(n, k) is the number of partitions of n with at most k parts where 0 <= k <= n, and each part is one of four kinds. %C A382041 Two unrestricted unary predicates on the parts set result in four kinds: The intersection, the both differences and the complement of the union. %C A382041 The 1-kind case is Euler's table A026820. %C A382041 The 2-kind case is A381895. %C A382041 The 3-kind case is A382025. %e A382041 Triangle starts: %e A382041 0 : [1] %e A382041 1 : [0, 4] %e A382041 2 : [0, 4, 14] %e A382041 3 : [0, 4, 20, 40] %e A382041 4 : [0, 4, 30, 70, 105] %e A382041 5 : [0, 4, 36, 116, 196, 252] %e A382041 6 : [0, 4, 46, 170, 350, 490, 574] %e A382041 7 : [0, 4, 52, 236, 556, 896, 1120, 1240] %e A382041 8 : [0, 4, 62, 310, 845, 1505, 2079, 2415, 2580] %e A382041 9 : [0, 4, 68, 400, 1200, 2400, 3584, 4480, 4960, 5180] %e A382041 10 : [0, 4, 78, 494, 1670, 3626, 5910, 7842, 9162, 9822, 10108] %e A382041 ... %o A382041 (Python) %o A382041 from sympy import binomial %o A382041 from sympy.utilities.iterables import partitions %o A382041 from sympy.combinatorics.partitions import IntegerPartition %o A382041 kinds = 4 - 1 # the number of part kinds - 1 %o A382041 def a382041_row( n): %o A382041 if n == 0 : return [1] %o A382041 t = list( [0] * n) %o A382041 for p in partitions( n): %o A382041 p = IntegerPartition( p).as_dict() %o A382041 fact = 1 %o A382041 s = 0 %o A382041 for k in p : %o A382041 s += p[k] %o A382041 fact *= binomial( kinds + p[k], kinds) %o A382041 if s > 0 : %o A382041 t[s - 1] += fact %o A382041 for i in range( n - 1): %o A382041 t[i+1] += t[i] %o A382041 return [0] + t %Y A382041 Main diagonal gives A023003. %Y A382041 Cf. A026820, A381895, A382025. %K A382041 nonn,tabl %O A382041 0,3 %A A382041 _Peter Dolland_, Mar 12 2025