cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382049 Numbers k such that k +- 2 and k +- 3 are all semiprimes.

This page as a plain text file.
%I A382049 #7 Mar 14 2025 20:23:19
%S A382049 12,36,216,540,1044,4284,6336,11304,17640,30276,31284,34056,35496,
%T A382049 35820,37836,41796,46080,47664,50940,57240,62244,71064,75096,80856,
%U A382049 84924,98820,100044,103536,106344,143100,143424,144936,149220,159264,159804,162036,168120,172584,175176,177624,194760,195300
%N A382049 Numbers k such that k +- 2 and k +- 3 are all semiprimes.
%C A382049 Except for a(1) = 12, these are the numbers k divisible by 36 with (k +- 2)/2 and (k +- 3)/3 prime.
%H A382049 Robert Israel, <a href="/A382049/b382049.txt">Table of n, a(n) for n = 1..10000</a>
%e A382049 a(3) = 216 is a term because 216 - 3 = 213 = 3 * 71, 216 - 2 = 215 = 2 * 107, 216 + 2 = 218 = 2 * 109, and 216 + 3 = 219 = 3 * 73 are all semiprimes.
%p A382049 filter:= proc(n) andmap(isprime, [(n-3)/3, (n-2)/2,(n+2)/2,(n+3)/3]) end proc:
%p A382049 filter(12):= true:
%p A382049 S:= select(filter, [12, seq(i,i=36 .. 10^6, 36)]):
%t A382049 Select[Range[12, 200000], 2 ==  PrimeOmega[# - 2] ==
%t A382049 PrimeOmega[# + 2] ==  PrimeOmega[# - 3] == PrimeOmega[# + 3] &]
%Y A382049 Cf. A001358, A105571.
%K A382049 nonn
%O A382049 1,1
%A A382049 _Zak Seidov_ and _Robert Israel_, Mar 13 2025