This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382050 #16 Mar 17 2025 22:15:44 %S A382050 0,0,5,0,79,0,650,2716,17846,0,277166,1472993,8233003,0,286485314, %T A382050 1797613432,11675780880,0,538954048563,3821844010905,27824692448867,0, %U A382050 1587841473665581,12417635018180828,99246128296767625,0,6742930364132819544,57228575814672196977,494789896551823383745,0,38997607084561562847324 %N A382050 a(n) = least positive integer m such that when m*(m+1) is written in base n, it is zeroless and contains every single nonzero digit exactly once, or 0 if no such number exists. %C A382050 Theorem: if n==3 (mod 4), then a(n) = 0. %C A382050 Proof: %C A382050 Since n^a == 1 (mod n-1), k == the digit sum of k in base n (mod n-1). Thus for a zeroless number k with every nonzero digit exactly once, k == n(n-1)/2 (mod n-1). %C A382050 Suppose n==3 (mod 4), i.e. n=2q+1 for some odd q. Then n(n-1)/2 = 2q^2+q. Since n-1 = 2q, this means that n(n-1)/2 == q (mod n-1). As q is odd, m(m+1)$ is even and n-1 is even, this implies that m(m+1) <> q (mod n-1) and thus m(m+1) is not a zeroless number with every nonzero digit exactly once. %F A382050 a(n) = 0 if n == 3 (mod 4). %F A382050 Conjecture: a(n) > 0 if n > 5 and n <> 3 (mod 4). %e A382050 a(9) = 2716. 2716*2717 = 7379372 which is 14786532 in base 9. %o A382050 (Python) %o A382050 from itertools import count %o A382050 from math import isqrt %o A382050 from sympy.ntheory import digits %o A382050 def A382050(n): %o A382050 k, l, d = (n*(n-1)>>1)%(n-1), n**(n-1)-(n**(n-1)-1)//(n-1)**2, tuple(range(1,n)) %o A382050 clist = [i for i in range(n-1) if i*(i+1)%(n-1)==k] %o A382050 if len(clist) == 0: %o A382050 return 0 %o A382050 s = (n**n - n**2 + n - 1)//((n - 1)**2) %o A382050 s = isqrt((s<<2)+1)-1>>1 %o A382050 s += n-1-s%(n-1) %o A382050 if s%(n-1) <= max(clist): %o A382050 s -= n-1 %o A382050 for a in count(s,n-1): %o A382050 if a*(a+1)>l: %o A382050 break %o A382050 for c in clist: %o A382050 m = a+c %o A382050 if m*(m+1)>l: %o A382050 break %o A382050 if tuple(sorted(digits(m*(m+1),n)[1:])) == d: %o A382050 return m %o A382050 return 0 # _Chai Wah Wu_, Mar 17 2025 %Y A382050 Cf. A381266. %K A382050 nonn,base %O A382050 2,3 %A A382050 _Chai Wah Wu_, Mar 13 2025