A382054 a(n) = least positive integer m such that when m*(m+1) is written in base n, it does not contain the digit n-1 and contains every single digit from 0 to n-2 exactly once, or 0 if no such number exists.
0, 0, 14, 54, 0, 616, 2251, 12069, 0, 251085, 1348305, 7619403, 0, 269717049, 1698727527, 11061795398, 0, 513383208454, 3648738866370, 26618719297968, 0, 1524495582671125, 11941193897016731, 95578593301936475, 0, 6510865478836888683, 55324396705324796861, 478855818873249715068, 0, 37817609915967014967822
Offset: 3
Examples
a(9) = 2251 since 2251*2252 = 5069252 which is 10475632 in base 9.
Programs
-
Python
from itertools import count from math import isqrt from sympy.ntheory import digits def A382054(n): k, l, d= (n*(n-1)>>1)%(n-1), (n - n**n + (n - 1)**2*(n**n + n**(n - 1)*(1 - n)))//(n - 1)**2, tuple(range(n-1)) clist = [i for i in range(n-1) if i*(i+1)%(n-1)==k] if len(clist) == 0: return 0 s = (n**(n - 1) + (n - 1)**2*(n**(n - 3)*(n - 1) - 1) - 1)//(n - 1)**2 s = isqrt((s<<2)+1)-1>>1 s += n-1-s%(n-1) if s%(n-1) <= max(clist): s -= n-1 for a in count(s,n-1): if a*(a+1)>l: break for c in clist: m = a+c if m*(m+1)>l: break if tuple(sorted(digits(m*(m+1),n)[1:]))==d: return m return 0 # Chai Wah Wu, Mar 17 2025
Formula
a(n) = 0 if n == 3 (mod 4).
Comments