A382062 Powerful numbers whose number of divisors is divisible by their number of unitary divisors.
1, 8, 27, 32, 72, 108, 125, 128, 200, 216, 243, 343, 392, 432, 500, 512, 648, 675, 864, 968, 1000, 1125, 1152, 1323, 1331, 1352, 1372, 1728, 1944, 2000, 2048, 2187, 2197, 2312, 2744, 2888, 3087, 3125, 3200, 3267, 3375, 3456, 4000, 4232, 4563, 4913, 5000, 5324, 5400
Offset: 1
Examples
27 = 3^3 is a term since it is powerful, A000005(27) = 4, A034444(27) = 2, and 2 | 4. 72 = 2^3 * 3^2 is a term since it is powerful, A000005(72) = 12, A034444(72) = 4, and 4 | 12.
Links
Programs
-
Mathematica
q[k_] := Module[{e = FactorInteger[k][[;;, 2]]}, AllTrue[e, # > 1 &] && Divisible[Times @@ (e+1), 2^Length[e]]]; Select[Range[5400], # == 1 || q[#] &]
-
PARI
isok(k) = if(k == 1, 1, my(f = factor(k)); vecmin(f[,2]) > 1 && !(numdiv(f) % (1<
Comments