cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382067 Lexicographically earliest sequence of distinct positive integers such that the product of two consecutive terms is always a factorial number.

This page as a plain text file.
%I A382067 #12 Mar 17 2025 22:19:57
%S A382067 1,2,3,8,15,48,105,384,945,3840,10395,46080,135135,645120,2027025,
%T A382067 3072,155925,256,14175,2816,170100,36608,2381400,549120,11340,32,1260,
%U A382067 4,6,20,36,140,288,12600,3168,151200,24,5,144,35,1152,315,16,45,112,360,14,2880
%N A382067 Lexicographically earliest sequence of distinct positive integers such that the product of two consecutive terms is always a factorial number.
%C A382067 For any prime number p, the sequence contains a multiple of p, say a(k), and this term satisfies a(k-1)*a(k) = p!.
%H A382067 Rémy Sigrist, <a href="/A382067/b382067.txt">Table of n, a(n) for n = 1..10000</a>
%H A382067 Rémy Sigrist, <a href="/A382067/a382067.gp.txt">PARI program</a>
%e A382067 The first terms are:
%e A382067   n   a(n)     a(n)*a(n+1)
%e A382067   --  -------  -----------
%e A382067    1        1           2!
%e A382067    2        2           3!
%e A382067    3        3           4!
%e A382067    4        8           5!
%e A382067    5       15           6!
%e A382067    6       48           7!
%e A382067    7      105           8!
%e A382067    8      384           9!
%e A382067    9      945          10!
%e A382067   10     3840          11!
%e A382067   11    10395          12!
%e A382067   12    46080          13!
%e A382067   13   135135          14!
%e A382067   14   645120          15!
%e A382067   15  2027025          13!
%e A382067   16     3072          12!
%o A382067 (Python)
%o A382067 from itertools import count, islice
%o A382067 def agen(): # generator of terms
%o A382067     fset, aset, an = set(), set(), 1
%o A382067     while True:
%o A382067         yield an
%o A382067         aset.add(an)
%o A382067         fk = 1
%o A382067         for k in count(2):
%o A382067             fk *= k
%o A382067             q, r = divmod(fk, an)
%o A382067             if r == 0 and q not in aset:
%o A382067                 an = q
%o A382067                 break
%o A382067 print(list(islice(agen(), 48))) # _Michael S. Branicky_, Mar 14 2025
%o A382067 (PARI) \\ See Links section.
%Y A382067 Cf. A000142, A375579, A382072, A382083, A382085.
%K A382067 nonn
%O A382067 1,2
%A A382067 _Rémy Sigrist_, Mar 14 2025