A382077 Number of integer partitions of n that can be partitioned into a set of sets.
1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 171, 217, 283, 361, 449, 574, 721, 900, 1126, 1397, 1731, 2143, 2632, 3223, 3961, 4825, 5874, 7131, 8646, 10452, 12604, 15155, 18216, 21826, 26108, 31169, 37156, 44202, 52492, 62233, 73676, 87089, 102756, 121074
Offset: 0
Keywords
Examples
For y = (3,2,2,2,1,1,1), we have the multiset partition {{1},{2},{1,2},{1,2,3}}, so y is counted under a(12). The a(1) = 1 through a(8) = 13 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (2,1) (3,1) (3,2) (4,2) (4,3) (5,3) (2,1,1) (4,1) (5,1) (5,2) (6,2) (2,2,1) (3,2,1) (6,1) (7,1) (3,1,1) (4,1,1) (3,2,2) (3,3,2) (2,2,1,1) (3,3,1) (4,2,2) (4,2,1) (4,3,1) (5,1,1) (5,2,1) (3,2,1,1) (6,1,1) (3,2,2,1) (3,3,1,1) (4,2,1,1) (3,2,1,1,1)
Crossrefs
Factorizations of this type are counted by A050345.
Normal multiset partitions of this type are counted by A116539.
The MM-numbers of these multiset partitions are A302494.
Twice-partitions of this type are counted by A358914.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]]; Table[Length[Select[IntegerPartitions[n], Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]>0&]],{n,0,9}]
Extensions
a(21)-a(50) from Bert Dobbelaere, Mar 29 2025
Comments