This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382078 #11 Mar 29 2025 13:40:24 %S A382078 0,0,1,1,2,2,5,6,9,13,17,23,33,42,58,76,97,126,168,207,266,343,428, %T A382078 534,675,832,1039,1279,1575,1933,2381,2881,3524,4269,5179,6237,7525, %U A382078 9033,10860,12969,15512,18475,22005,26105,30973,36642,43325,51078,60184,70769,83152 %N A382078 Number of integer partitions of n that cannot be partitioned into a set of sets. %C A382078 First differs from A240309 at a(11) = 23, A240309(11) = 25. %C A382078 First differs from A381990 at a(17) = 126, A381990(17) = 127. %e A382078 The partition y = (2,2,1,1,1) can be partitioned into sets in the following ways: %e A382078 {{1},{1,2},{1,2}} %e A382078 {{1},{1},{2},{1,2}} %e A382078 {{1},{1},{1},{2},{2}} %e A382078 But none of these is itself a set, so y is counted under a(7). %e A382078 The a(2) = 1 through a(8) = 9 partitions: %e A382078 (11) (111) (22) (2111) (33) (2221) (44) %e A382078 (1111) (11111) (222) (4111) (2222) %e A382078 (3111) (22111) (5111) %e A382078 (21111) (31111) (22211) %e A382078 (111111) (211111) (41111) %e A382078 (1111111) (221111) %e A382078 (311111) %e A382078 (2111111) %e A382078 (11111111) %t A382078 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A382078 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A382078 Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]==0&]],{n,0,9}] %Y A382078 More on set multipartitions: A089259, A116540, A270995, A296119, A318360. %Y A382078 For normal multisets see A292432, A292444, A116539. %Y A382078 These partitions are ranked by A293243, complement A382200. %Y A382078 The MM-numbers of these multiset partitions (set of sets) are A302494. %Y A382078 Twice-partitions of this type are counted by A358914. %Y A382078 For distinct sums we have A381990 (ranks A381806), complement A381992 (ranks A382075). %Y A382078 The complement is counted by A382077, unique A382079. %Y A382078 A000041 counts integer partitions, strict A000009. %Y A382078 A050320 counts multiset partitions of prime indices into sets. %Y A382078 A050326 counts multiset partitions into distinct sets, complement A050345. %Y A382078 A265947 counts refinement-ordered pairs of integer partitions. %Y A382078 Cf. A293511, A299202, A317142, A381441, A381454, A381717, A381718, A381870. %K A382078 nonn %O A382078 0,5 %A A382078 _Gus Wiseman_, Mar 18 2025 %E A382078 a(19)-a(50) from _Bert Dobbelaere_, Mar 29 2025