This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382079 #14 Mar 29 2025 17:25:18 %S A382079 1,1,1,1,2,3,3,4,6,5,10,9,13,14,21,20,32,31,42,47,63,62,90,94,117,138, %T A382079 170,186,235,260,315,363,429,493,588,674,795,901,1060,1209,1431,1608, %U A382079 1896,2152,2515,2854,3310,3734,4368,4905,5686 %N A382079 Number of integer partitions of n that can be partitioned into a set of sets in exactly one way. %e A382079 The unique multiset partition for (3222111) is {{1},{2},{1,2},{1,2,3}}. %e A382079 The a(1) = 1 through a(12) = 13 partitions: %e A382079 1 2 3 4 5 6 7 8 9 A B C %e A382079 211 221 411 322 332 441 433 443 552 %e A382079 311 2211 331 422 522 442 533 633 %e A382079 511 611 711 622 551 822 %e A382079 3311 42111 811 722 A11 %e A382079 32111 3322 911 4422 %e A382079 4411 42221 5511 %e A382079 32221 53111 33321 %e A382079 43111 62111 52221 %e A382079 52111 54111 %e A382079 63111 %e A382079 72111 %e A382079 3222111 %t A382079 ssfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[ssfacs[n/d],Min@@#>d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]; %t A382079 Table[Length[Select[IntegerPartitions[n],Length[ssfacs[Times@@Prime/@#]]==1&]],{n,0,15}] %Y A382079 Normal multiset partitions of this type are counted by A116539, see A381718. %Y A382079 These partitions are ranked by A293511. %Y A382079 MM-numbers of these multiset partitions (sets of sets) are A302494, see A302478, A382201. %Y A382079 Twice-partitions of this type (sets of sets) are counted by A358914, see A279785. %Y A382079 For at least one choice we have A382077 (ranks A382200), see A381992 (ranks A382075). %Y A382079 For no choices we have A382078 (ranks A293243), see A381990 (ranks A381806). %Y A382079 For distinct block-sums instead of blocks we have A382460, ranked by A381870. %Y A382079 Set multipartitions: A089259, A116540, A270995, A296119, A318360. %Y A382079 A000041 counts integer partitions, strict A000009. %Y A382079 A050320 counts multiset partitions of prime indices into sets. %Y A382079 A050326 counts multiset partitions of prime indices into distinct sets, see A381633. %Y A382079 A265947 counts refinement-ordered pairs of integer partitions. %Y A382079 Cf. A002846, A213427, A299202, A317142, A381078, A381441, A381454, A381636. %K A382079 nonn,more %O A382079 0,5 %A A382079 _Gus Wiseman_, Mar 20 2025 %E A382079 a(21)-a(50) from _Bert Dobbelaere_, Mar 29 2025