This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382080 #6 Mar 22 2025 08:38:53 %S A382080 1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,0,1,2,1,1,1,1, %T A382080 1,1,1,1,1,0,1,1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,1,0,1,1,1,1,0, %U A382080 1,2,1,0,1,1,0,0,1,1,1,0,1,1,1,0,1,1,1 %N A382080 Number of ways to partition the prime indices of n into sets with a common sum. %C A382080 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %C A382080 Also the number of factorizations of n into squarefree numbers > 1 with equal sums of prime indices. %e A382080 The prime indices of 900 are {1,1,2,2,3,3}, with the following partitions into sets with a common sum: %e A382080 {{1,2,3},{1,2,3}} %e A382080 {{3},{3},{1,2},{1,2}} %e A382080 So a(900) = 2. %t A382080 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A382080 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A382080 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]]; %t A382080 Table[Length[Select[mps[prix[n]], SameQ@@Total/@#&&And@@UnsameQ@@@#&]],{n,100}] %Y A382080 For just sets we have A050320, distinct A050326. %Y A382080 Twice-partitions of this type are counted by A279788. %Y A382080 For just a common sum we have A321455. %Y A382080 MM-numbers of these multiset partitions are A326534 /\ A302478. %Y A382080 For distinct instead of equal sums we have A381633. %Y A382080 For constant instead of strict blocks we have A381995. %Y A382080 Positions of 0 are A381719, counted by A381994. %Y A382080 A000688 counts factorizations into prime powers, distinct A050361. %Y A382080 A001055 counts factorizations, strict A045778. %Y A382080 A055396 gives least prime index, greatest A061395. %Y A382080 A056239 adds up prime indices, row sums of A112798. %Y A382080 A317141 counts coarsenings of prime indices, refinements A300383. %Y A382080 Cf. A000720, A000961, A001222, A006171, A279784, A353866, A381635, A381871. %K A382080 nonn %O A382080 1,30 %A A382080 _Gus Wiseman_, Mar 20 2025