This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382093 #29 May 24 2025 16:21:35 %S A382093 1,2,1,2,3,1,2,1,2,3,1,2,1,2,3,4,1,2,1,2,3,1,2,1,2,3,1,2,1,2,3,4,1,2, %T A382093 1,2,3,1,2,1,2,3,1,2,1,2,3,4,1,2,1,2,3,1,2,1,2,3,1,2,1,2,3,4,5,1,2,1, %U A382093 2,3,1,2,1,2,3,1,2,1,2,3,4,1,2,1,2,3,1,2,1,2,3,1,2,1,2,3,4,1,2,1,2,3,1,2,1,2,3,1,2,1,2,3,4,1,2,1,2,3,1,2 %N A382093 Sequence where k is appended after every (k-1)! occurrences of 1, with multiple values following a 1 listed in order. %C A382093 The frequencies of the terms follow the Poisson distribution with parameter value 1. %C A382093 The geometric mean approaches A382095 in the limit. In general, for parameter value p it approaches Product_{k>=2} k^(((p^(k-1))*(e^(-p)))/(k-1)!). %H A382093 Jwalin Bhatt, <a href="/A382093/b382093.txt">Table of n, a(n) for n = 1..10000</a> %H A382093 Wikipedia, <a href="https://en.wikipedia.org/wiki/Poisson_distribution">Poisson distribution</a> %e A382093 Every 1 is followed by a 2 because (2-1)! = 1, %e A382093 after every (2!=2) ones we see a 3, %e A382093 after every (3!=6) ones we see a 4 and so on. %o A382093 (Python) %o A382093 from itertools import islice %o A382093 from math import factorial %o A382093 def poisson_distribution_generator(): %o A382093 num_ones, num_reached = 0, 1 %o A382093 while num_ones := num_ones+1: %o A382093 yield 1 %o A382093 for num in range(2, num_reached+2): %o A382093 if num_ones % factorial(num-1) == 0: %o A382093 yield num %o A382093 num_reached += num == num_reached+1 %o A382093 A382093 = list(islice(poisson_distribution_generator(), 120)) %Y A382093 Cf. A381522, A381900, A382095. %K A382093 nonn %O A382093 1,2 %A A382093 _Jwalin Bhatt_, Mar 25 2025