This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382100 #24 Mar 16 2025 12:20:09 %S A382100 1,1,1,1,1,1,1,1,2,1,1,1,3,4,1,1,1,4,10,8,1,1,1,5,19,35,16,1,1,1,6,31, %T A382100 98,126,32,1,1,1,7,46,213,531,462,64,1,1,1,8,64,396,1556,2974,1716, %U A382100 128,1,1,1,9,85,663,3651,11843,17060,6435,256,1 %N A382100 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of 1/(2 - B_k(x)), where B_k(x) = 1 + x*B_k(x)^k. %F A382100 A(n,k) = ( binomial(k*n,n) - (k-2) * Sum_{j=0..n-1} binomial(k*n,j) )/2 for n > 0. %F A382100 G.f. of column k: 1/( 1 - Series_Reversion( x/(1+x)^k ) ). %e A382100 Square array begins: %e A382100 1, 1, 1, 1, 1, 1, 1, ... %e A382100 1, 1, 1, 1, 1, 1, 1, ... %e A382100 1, 2, 3, 4, 5, 6, 7, ... %e A382100 1, 4, 10, 19, 31, 46, 64, ... %e A382100 1, 8, 35, 98, 213, 396, 663, ... %e A382100 1, 16, 126, 531, 1556, 3651, 7391, ... %e A382100 1, 32, 462, 2974, 11843, 35232, 86488, ... %o A382100 (PARI) a(n, k) = polcoef(1/(2-sum(j=0, n, binomial(k*j+1, j)/(k*j+1)*x^j+x*O(x^n))), n); %o A382100 (PARI) a(n, k) = if(n==0, 1, (binomial(k*n, n)-(k-2)*sum(j=0, n-1, binomial(k*n, j)))/2); %Y A382100 Columns k=0..5 give A000012, A011782, A088218, A047099 (for n > 0), A107026(n)/2 (for n > 0), A304979(n)/2 (for n > 0). %Y A382100 Cf. A107027, A107030, A355262, A382101. %K A382100 nonn,tabl %O A382100 0,9 %A A382100 _Seiichi Manyama_, Mar 15 2025