cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382108 Number of zeros (counted with multiplicity) on the unit circle of the polynomial P(n,z) = Sum_{k=0..n} T(n,k)*z^k where T(n,k) = A214292(n,k) is the first differences of rows in Pascal's triangle.

This page as a plain text file.
%I A382108 #7 Mar 25 2025 14:03:04
%S A382108 0,1,2,3,4,5,6,3,4,3,6,5,6,5,6,7,8,9,10,3,8,7,10,9,10,7,10,11,8,11,12,
%T A382108 9,10,11,14,11,14,11,12,13,12,13,12,15,12,7,18,19,16,11,14,11,14,11,
%U A382108 18,11,18,15,18,19,22,7,16,21,20,17,22,15,18,21,20,25,20
%N A382108 Number of zeros (counted with multiplicity) on the unit circle of the polynomial P(n,z) = Sum_{k=0..n} T(n,k)*z^k where T(n,k) = A214292(n,k) is the first differences of rows in Pascal's triangle.
%e A382108 a(4)=4 because P(4,z)= 4 + 5*z -5*z^3 -4*z^4  with 4 roots z1, z2, z2, z4 on the unit circle : z1 = -1, z2 = +1, z3 = -.625000 -.7806247*i, z4 = -.625000 +.7806247*i.
%e A382108 a(6)=6 because P(6,z)= 6 + 14*z +14*z^2 -14*z^4-14*z^5-6z^6  with 6 roots on the unit circle:
%e A382108 x1 = -1
%e A382108 x2 = +1
%e A382108 x2 = -.6666666667 - .7453559925*i
%e A382108 x3 = -.6666666667 + .7453559925*i
%e A382108 x5 = -.500000000 - .8660254038*i
%e A382108 x6 = -.500000000 + .8660254038*i
%p A382108 A382108:=proc(n) local m,y,it:
%p A382108 y:=[fsolve(add((binomial(n+1,k+1)-binomial(n+1,k))*x^k,k=0..n),x,complex)]:it:=0:
%p A382108  for m from 1 to nops(y) do:
%p A382108     if ((Re(y[m]))^2+(Im(y[m]))^2)=1
%p A382108      then it:=it+1:
%p A382108      else
%p A382108     fi:
%p A382108    od:
%p A382108     A382108(n):=it:end proc:seq(A382108(n),n=1..80);
%Y A382108 Cf. A007318, A214292, A382019 (on and inside the circle).
%K A382108 nonn
%O A382108 0,3
%A A382108 _Michel Lagneau_, Mar 15 2025