cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382114 Semiperimeter of the unique primitive Pythagorean triple whose inradius is A000108(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A382114 #27 May 05 2025 22:35:12
%S A382114 6,6,15,66,435,3655,35245,369370,4094091,47292675,564261621,
%T A382114 6911763951,86538608325,1103803048701,14305266650521,187980068232586,
%U A382114 2500329761730811,33615543537222571,456277456908296101,6246438370759741771,86175353796214314061,1197196443861278161861,16738118900567747790121,235379797036403711485951
%N A382114 Semiperimeter of the unique primitive Pythagorean triple whose inradius is A000108(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%D A382114 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.
%H A382114 Miguel-Ángel Pérez García-Ortega, <a href="/A382114/a382114.pdf">El Libro de las Ternas Pitagóricas</a>
%F A382114 a(n) = (A383251(n,1) + A383251(n,2) + A383251(n,3))/2.
%F A382114 a(n) = (A000108(n) + 1)*(2*A000108(n) + 1).
%e A382114 For n=2, the short leg is A383251(2,1) = 3, the long leg is A383251(2,2) = 4 and the hypotenuse is A383251(2,3) = 5 so the semiperimeter is then a(2) = (3 + 4 + 5)/2 = 6.
%t A382114 a=Table[(2n)!/(n!(n+1)!),{n,0,23}];Apply[Join,Map[{(#+1)(2#+1)}&,a]]
%Y A382114 Cf. A000108, A383251, A381483.
%K A382114 nonn,easy
%O A382114 0,1
%A A382114 _Miguel-Ángel Pérez García-Ortega_, Apr 22 2025