cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382120 Numbers k in A024619 such that there exists a prime p | k for which p^(m+1) == r (mod k), where r is also in A024619, and a prime q | k for which q^(m+1) == r (mod k), where r is a prime power.

This page as a plain text file.
%I A382120 #23 May 30 2025 23:15:22
%S A382120 10,18,20,21,22,26,28,30,34,36,38,40,42,46,48,50,52,54,55,57,58,60,68,
%T A382120 72,74,78,82,84,86,93,94,96,98,100,106,108,110,111,114,116,117,118,
%U A382120 122,124,126,129,132,134,136,142,146,147,148,150,156,158,162,164,165
%N A382120 Numbers k in A024619 such that there exists a prime p | k for which p^(m+1) == r (mod k), where r is also in A024619, and a prime q | k for which q^(m+1) == r (mod k), where r is a prime power.
%C A382120 This sequence intersects neither A381750 nor A381864.
%H A382120 Michael De Vlieger, <a href="/A382120/b382120.txt">Table of n, a(n) for n = 1..10000</a>
%e A382120 Table of a(n) for select n, showing prime decomposition (facs(a(n))), p_x^(m+1) mod n, where x = 1 denotes the smallest prime factor, x = 2, the second smallest prime factor, etc. Brackets appear around residues that are not prime powers.
%e A382120                           p_x^(m+1) mod n
%e A382120  n  a(n)  facs(a(n))      p_1   p_2   p_3
%e A382120 -----------------------------------------
%e A382120  1   10   2 * 5           [6]    5
%e A382120  2   18   2 * 3^2        [14]    9
%e A382120  3   20   2^2 * 5        [12]    5
%e A382120  4   21   3 * 7           [6]    7
%e A382120  5   22   2 * 11         [10]   11
%e A382120  6   26   2 * 13          [6]   13
%e A382120  7   28   2^2 * 7          4   [21]
%e A382120  8   30   2 * 3 * 5        2   [21]    5
%e A382120  9   34   2 * 17         [30]   17
%e A382120 10   36   2^2 * 3^2      [28]    9
%e A382120 11   38   2 * 19         [26]   19
%e A382120 22   60   2^2 * 3 * 5      4   [21]    5
%t A382120 nn = 165, Reap[Do[If[! PrimePowerQ[n], If[CountDistinct@ Map[Boole@ PrimePowerQ@ PowerMod[#, 1 + Floor@ Log[#, n], n] &, FactorInteger[n][[All, 1]] ] == 2, Sow[n]]], {n, 2, nn}] ][[-1, 1]]
%Y A382120 Cf. A000961, A024619, A381750, A381864.
%K A382120 nonn
%O A382120 1,1
%A A382120 _Michael De Vlieger_, Apr 06 2025