A382136 Number of triples of non-crossing lattice paths from (0,0) to (n,n) using (1,0) and (0,1) as steps.
1, 4, 50, 980, 24696, 731808, 24293412, 877262100, 33803832920, 1371597504992, 58043512597616, 2543610972177184, 114801908084920000, 5313688317073440000, 251370667949555421000, 12120154230252872020500, 594283640753967620247000, 29576997448419995135100000
Offset: 0
Examples
For n = 2, the triple {NNEE, NENE, ENEN} is valid, while {ENNE, NNEE, NEEN} is invalid.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..550
- Robert de Mello Koch, Animik Ghosh, and Hendrik J. R. Van Zyl, Bosonic Fortuity in Vector Models, arXiv:2504.14181 [hep-th], 2025. See p. 9; Journal of High Energy Physics 06 (2025) 246.
- Wikipedia, Lindstrom-Gessel-Viennot lemma
Programs
-
Mathematica
A382136[n_] := If[n == 0, 1, 4*Binomial[2*n+1, n-1]^2*Binomial[2*n, n-1]/n^3]; Array[A382136, 20, 0] (* Paolo Xausa, Jul 03 2025 *)
-
PARI
a(n) = if(n==0, 1, 4*binomial(2*n+1, n-1)^2*binomial(2*n, n-1)/n^3)
Formula
From the Lindstrom-Gessel-Viennot lemma and using the definition from the first comment, a(n) is the determinant of the matrix:
C(2*n, n) C(2*n, n-1) C(2*n, n-2)
C(2*n, n+1) C(2*n, n) C(2*n, n-1)
C(2*n, n+2) C(2*n, n+1) C(2*n, n)
a(n) = 4*C(2*n+1,n-1)*C(2*n+1,n+2)*C(2*n,n+1)/n^3 for n >= 1.
Comments