A382138 a(n) = A381800(n) - A381798(n).
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 3, 0, 2, 1, 1, 0, 4, 0, 1, 0, 2, 0, 8, 0, 0, 1, 1, 1, 5, 0, 1, 1, 3, 0, 10, 0, 2, 3, 1, 0, 6, 0, 5, 1, 2, 0, 9, 1, 4, 1, 1, 0, 16, 0, 1, 2, 0, 1, 14, 0, 2, 1, 12, 0, 8, 0, 1, 5, 2, 1, 16, 0, 5, 0, 1, 0, 19, 1
Offset: 1
Keywords
Examples
n a(n) T(n) \ S(n) ---------------------------------------------- 6 1 {0} 10 1 {0} 12 2 {0,6} 18 3 {0,6,12} 20 2 {0,10} 24 4 {0,6,12,18} 28 2 {0,14} 30 8 {0,6,10,12,15,18,20,24} 36 5 {0,6,12,18,24} 72 8 {0,6,12,18,24,36,48,54} 100 7 {0,10,20,40,50,60,80} 108 12 {0,6,12,18,24,36,48,54,60,72,84,96} 144 11 {0,6,12,18,24,36,48,54,72,96,108} 210 70 {0,6,10,12,14,15,18,20,..,200,204} . a(2) = 0 since T(2) = S(2) = V(2,2) = {0,1}. a(4) = 0 since T(4) = S(4) = V(4,2) = {0,1,2}. a(6) = 1 since T(6) = {0,1,2,3,4} but S(6) = {1,2,4} U {1,3}. a(12) = 2 since T(12) = {0,1,2,3,4,6,8,9} but S(12) = {1,2,4,8} U {1,3,9}. a(16) = 0 since T(16) = S(16) = V(16,2) = {0,1,2,4,8}. a(18) = 3 since T(18) = {0,1,2,3,4,6,8,9,10,12,14,16} but S(18) = {1,2,4,8,16,14,10} U {1,3,9}. The numbers {0,6,12} do not appear in S(18). a(30) = 8 since T(30) = {0,1,2,3,4,5,6,8,9,10,12,15,16,18,20,21,24,25,27}, but S(30) = {1,2,4,8,16} U {1,3,9,27,21} U {1,5,25}. The numbers {0,6,12,18,24} do not appear in S(30), etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Graph of terms k in row n of A381801 not in row n of A381799, n = 1..60.
Programs
-
Mathematica
f[x_, p_] := Block[{m = 2, r, c}, Which[PrimePowerQ[x], Join[{0}, #1^Range[0, #2 - 1]] & @@ FactorInteger[x][[1]], PowerMod[p, m, x] == p, {1, p}, True, c[_] := False; c[1] = c[p] = True; {1, p}~Join~ Reap[While[r = PowerMod[p, m, x]; ! c[r], Sow[r]; c[r] = True; m++]][[-1, 1]]]]; g[x_] := Block[{c, ff, m, r, p, s, w}, c[_] := True; ff = FactorInteger[x][[All, 1]]; w = Length[ff]; s = {1}; Do[Set[p[i], ff[[i]]], {i, w}]; Do[Set[s, Union@ Flatten@ Join[s, #[[-1, 1]]]] &@ Reap@ Do[m = s[[j]]; While[Sow@ Set[r, Mod[m*p[i], x]]; c[r], c[r] = False; m *= p[i]], {j, Length[s]}], {i, w}]; Length[s] ]; {0}~Join~Table[g[n] - CountDistinct@ Flatten@ Map[f[n, #] &, FactorInteger[n][[All, 1]] ], {n, 2, 120}]
Formula
a(p^m) = 0 for prime p and m >= 0.
a(n) >= 1 for n in A024619, since residue 0 (mod n) is in T(n) is not in any V(n,p) and thus also not in S(n), because n is not a prime power.
Comments