This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382177 #8 Mar 20 2025 09:29:36 %S A382177 2,2,3,10,3,312,4,18,18,96,96,600,4,6168960,6120,18,18,11017036800,4, %T A382177 56229997824000,114,760,68947200,18,5,14544,141120,192,13320, %U A382177 9092075324665919034015350784000000,28,520412336961032355840000,27,1400,199584000,116496,180 %N A382177 a(n) is the least k > 1 such that the factorial base expansion of k*n starts with that of n while the remaining digits are zeros. %C A382177 This sequence is well defined: for any n > 0 and m >= 0, A153880^m(n) (where A153880^m denotes the m-th iterate of A153880) is a multiple of (m+1)! whose factorial base expansion starts with that of n while the remaining digits are zeros, so for m sufficiently large, n will divide (m+1)! and hence this value. %H A382177 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a> %F A382177 a(k!) = k+1 for any k > 0. %e A382177 The first terms, in decimal and in factorial base, are: %e A382177 n a(n) fact(n) fact(a(n)*n) %e A382177 -- ------- ------- --------------------- %e A382177 0 2 0 0 %e A382177 1 2 1 1,0 %e A382177 2 3 1,0 1,0,0 %e A382177 3 10 1,1 1,1,0,0 %e A382177 4 3 2,0 2,0,0 %e A382177 5 312 2,1 2,1,0,0,0,0 %e A382177 6 4 1,0,0 1,0,0,0 %e A382177 7 18 1,0,1 1,0,1,0,0 %e A382177 8 18 1,1,0 1,1,0,0,0 %e A382177 9 96 1,1,1 1,1,1,0,0,0 %e A382177 10 96 1,2,0 1,2,0,0,0,0 %e A382177 11 600 1,2,1 1,2,1,0,0,0,0 %e A382177 12 4 2,0,0 2,0,0,0 %e A382177 13 6168960 2,0,1 2,0,1,0,0,0,0,0,0,0,0 %e A382177 14 6120 2,1,0 2,1,0,0,0,0,0,0 %e A382177 15 18 2,1,1 2,1,1,0,0 %o A382177 (PARI) A153880(n) = { my (v = 0, f = 1); for (r = 2, oo, if (n==0, return (v);); v += (n%r) * f *= r; n \= r;); } %o A382177 a(n) = { my (m = n); while (1, m = A153880(m); if (m==0, return (2), m%n==0, return (m/n));); } %Y A382177 Cf. A153880, A382178. %K A382177 nonn,base %O A382177 0,1 %A A382177 _Rémy Sigrist_, Mar 17 2025