cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382194 List of connected graphs that are squares, encoded as in A076184.

This page as a plain text file.
%I A382194 #15 Mar 22 2025 12:00:48
%S A382194 0,1,7,31,63,239,255,511,1023,3455,3887,3951,3967,4095,7679,7903,7935,
%T A382194 8191,16350,16351,16383,32767,104063,104447,106287,106351,111587,
%U A382194 111599,112511,112623,112639,127791,127855,127871,128879,128895,129023,131071,237567
%N A382194 List of connected graphs that are squares, encoded as in A076184.
%C A382194 Intersection of A382193 and A382195.
%H A382194 Pontus von Brömssen, <a href="/A382194/b382194.txt">Table of n, a(n) for n = 1..1580</a> (graphs on up to 9 vertices)
%H A382194 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphSquare.html">Graph Square</a>.
%H A382194 Wikipedia, <a href="https://en.wikipedia.org/wiki/Graph_power">Graph power</a>.
%e A382194 As an irregular triangle, where row n >= 1 contains A382180(n) terms:
%e A382194      0;
%e A382194      1;
%e A382194      7;
%e A382194     31,   63;
%e A382194    239,  255,  511, 1023;
%e A382194   3455, 3887, 3951, 3967, 4095, 7679, 7903, 7935, 8191, 16350, 16351, 16383, 32767;
%e A382194   ...
%e A382194 The diamond graph is connected and isomorphic to the square of the path graph on 4 vertices. The code of the diamond graph is 31, so 31 is a term.
%Y A382194 Cf. A076184, A382180, A382193, A382195, A382283.
%K A382194 nonn,tabf
%O A382194 1,3
%A A382194 _Pontus von Brömssen_, Mar 18 2025