This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382194 #15 Mar 22 2025 12:00:48 %S A382194 0,1,7,31,63,239,255,511,1023,3455,3887,3951,3967,4095,7679,7903,7935, %T A382194 8191,16350,16351,16383,32767,104063,104447,106287,106351,111587, %U A382194 111599,112511,112623,112639,127791,127855,127871,128879,128895,129023,131071,237567 %N A382194 List of connected graphs that are squares, encoded as in A076184. %C A382194 Intersection of A382193 and A382195. %H A382194 Pontus von Brömssen, <a href="/A382194/b382194.txt">Table of n, a(n) for n = 1..1580</a> (graphs on up to 9 vertices) %H A382194 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphSquare.html">Graph Square</a>. %H A382194 Wikipedia, <a href="https://en.wikipedia.org/wiki/Graph_power">Graph power</a>. %e A382194 As an irregular triangle, where row n >= 1 contains A382180(n) terms: %e A382194 0; %e A382194 1; %e A382194 7; %e A382194 31, 63; %e A382194 239, 255, 511, 1023; %e A382194 3455, 3887, 3951, 3967, 4095, 7679, 7903, 7935, 8191, 16350, 16351, 16383, 32767; %e A382194 ... %e A382194 The diamond graph is connected and isomorphic to the square of the path graph on 4 vertices. The code of the diamond graph is 31, so 31 is a term. %Y A382194 Cf. A076184, A382180, A382193, A382195, A382283. %K A382194 nonn,tabf %O A382194 1,3 %A A382194 _Pontus von Brömssen_, Mar 18 2025