This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382201 #8 Mar 23 2025 08:40:28 %S A382201 1,2,3,5,6,10,11,13,15,17,22,26,29,30,31,33,34,39,41,43,47,51,55,58, %T A382201 59,62,65,66,67,73,78,79,82,83,85,86,87,93,94,101,102,109,110,113,118, %U A382201 123,127,129,130,134,137,139,141,145,146,149,155,157,158,163,165 %N A382201 MM-numbers of sets of sets with distinct sums. %C A382201 First differs from A302494 in lacking 143, corresponding to the multiset partition {{1,2},{3}}. %C A382201 Also products of prime numbers of squarefree index such that the factors all have distinct sums of prime indices. %C A382201 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. %F A382201 Equals A302478 /\ A326535. %e A382201 The terms together with their prime indices of prime indices begin: %e A382201 1: {} %e A382201 2: {{}} %e A382201 3: {{1}} %e A382201 5: {{2}} %e A382201 6: {{},{1}} %e A382201 10: {{},{2}} %e A382201 11: {{3}} %e A382201 13: {{1,2}} %e A382201 15: {{1},{2}} %e A382201 17: {{4}} %e A382201 22: {{},{3}} %e A382201 26: {{},{1,2}} %e A382201 29: {{1,3}} %e A382201 30: {{},{1},{2}} %e A382201 31: {{5}} %e A382201 33: {{1},{3}} %e A382201 34: {{},{4}} %e A382201 39: {{1},{1,2}} %t A382201 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A382201 Select[Range[100],And@@SquareFreeQ/@prix[#]&&UnsameQ@@Total/@prix/@prix[#]&] %Y A382201 Set partitions of this type are counted by A275780. %Y A382201 Twice-partitions of this type are counted by A279785. %Y A382201 For just sets of sets we have A302478. %Y A382201 For distinct blocks instead of block-sums we have A302494. %Y A382201 For equal instead of distinct sums we have A302497. %Y A382201 For just distinct sums we have A326535. %Y A382201 For normal multiset partitions see A326519, A326533, A326537, A381718. %Y A382201 Factorizations of this type are counted by A381633. See also A001055, A045778, A050320, A050326, A321455, A321469, A382080. %Y A382201 A055396 gives least prime index, greatest A061395. %Y A382201 A056239 adds up prime indices, row sums of A112798. %Y A382201 Cf. A000720, A003963, A005117, A007716, A293511, A302242, A319899, A326534, A368100, A368101, A381635, A382215. %K A382201 nonn %O A382201 1,2 %A A382201 _Gus Wiseman_, Mar 21 2025