A382202 Number of normal multisets of size n that cannot be partitioned into a set of sets with distinct sums.
0, 0, 1, 1, 3, 5, 9, 16, 27, 48, 78, 133
Offset: 0
Examples
The normal multiset m = {1,1,1,2,2} has 3 partitions into a set of sets: {{1},{1,2},{1,2}} {{1},{1},{2},{1,2}} {{1},{1},{1},{2},{2}} but none of these has distinct block-sums, so m is counted under a(5). The a(2) = 1 through a(6) = 9 normal multisets: {1,1} {1,1,1} {1,1,1,1} {1,1,1,1,1} {1,1,1,1,1,1} {1,1,1,2} {1,1,1,1,2} {1,1,1,1,1,2} {1,2,2,2} {1,1,1,2,2} {1,1,1,1,2,2} {1,1,2,2,2} {1,1,1,1,2,3} {1,2,2,2,2} {1,1,1,2,2,2} {1,1,2,2,2,2} {1,2,2,2,2,2} {1,2,2,2,2,3} {1,2,3,3,3,3}
Crossrefs
Programs
-
Mathematica
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]]; Table[Length[Select[allnorm[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]==0&]],{n,0,5}]
Comments