This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382203 #13 Apr 04 2025 23:42:07 %S A382203 1,1,2,4,9,19,37,76,159,326,671,1376,2815,5759,11774,24083,49249, %T A382203 100632,205490,419420,855799,1745889,3561867,7268240,14836127, %U A382203 30295633,61888616 %N A382203 Number of normal multiset partitions of weight n into constant multisets with distinct sums. %C A382203 We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks. %e A382203 The a(1) = 1 through a(4) = 9 multiset partitions: %e A382203 {{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}} %e A382203 {{1},{2}} {{1},{1,1}} {{1},{1,1,1}} %e A382203 {{1},{2,2}} {{1,1},{2,2}} %e A382203 {{1},{2},{3}} {{1},{2,2,2}} %e A382203 {{2},{1,1,1}} %e A382203 {{1},{2},{2,2}} %e A382203 {{1},{2},{3,3}} %e A382203 {{1},{3},{2,2}} %e A382203 {{1},{2},{3},{4}} %e A382203 The a(5) = 19 factorizations: %e A382203 32 2*16 2*3*27 2*3*5*25 2*3*5*7*11 %e A382203 4*8 2*4*9 2*3*5*9 %e A382203 2*81 2*3*8 2*3*5*49 %e A382203 4*27 2*3*125 2*3*7*25 %e A382203 9*8 2*9*25 %e A382203 3*16 2*5*27 %e A382203 5*4*9 %t A382203 allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; %t A382203 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A382203 mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]]; %t A382203 Table[Length[Join@@(Select[mps[#],UnsameQ@@Total/@#&&And@@SameQ@@@#&]&/@allnorm[n])],{n,0,5}] %Y A382203 Without distinct sums we have A055887. %Y A382203 Twice-partitions of this type are counted by A279786. %Y A382203 For distinct blocks instead of sums we have A304969. %Y A382203 Without constant blocks we have A326519. %Y A382203 Factorizations of this type are counted by A381635. %Y A382203 For strict instead of constant blocks we have A381718. %Y A382203 For equal instead of distinct block-sums we have A382204. %Y A382203 For equal block-sums and strict blocks we have A382429. %Y A382203 A000670 counts patterns, ranked by A055932 and A333217, necklace A019536. %Y A382203 A001055 count multiset partitions of prime indices, strict A045778. %Y A382203 A089259 counts set multipartitions of integer partitions. %Y A382203 A321469 counts multiset partitions with distinct block-sums, ranks A326535. %Y A382203 Normal multiset partitions: A035310, A116540, A255906, A317532. %Y A382203 Set multipartitions with distinct sums: A279785, A381806, A381870. %Y A382203 Cf. A007716, A116539, A255903, A275780, A317583, A326517, A326518, A381633, A381636, A382216, A382428. %K A382203 nonn,more %O A382203 0,3 %A A382203 _Gus Wiseman_, Mar 26 2025 %E A382203 a(14)-a(26) from _Christian Sievers_, Apr 04 2025