A382204 Number of normal multiset partitions of weight n into constant blocks with a common sum.
1, 1, 2, 3, 4, 4, 7, 5, 8, 8, 10, 8, 15, 9, 14, 15, 17, 13, 22, 14, 25, 21, 23, 19, 34, 24, 29, 28, 37, 27, 45, 29, 44, 38, 43, 43, 59, 40, 51, 48, 69, 48, 71, 52, 73, 69, 72, 61, 93, 72, 91, 77, 99, 78, 105, 95, 119, 95, 113, 96, 146, 107, 126, 123, 151, 130
Offset: 0
Keywords
Examples
The a(1) = 1 through a(6) = 7 multiset partitions: {1} {11} {111} {1111} {11111} {111111} {1}{1} {2}{11} {11}{11} {2}{11}{11} {111}{111} {1}{1}{1} {2}{2}{11} {2}{2}{2}{11} {22}{1111} {1}{1}{1}{1} {1}{1}{1}{1}{1} {11}{11}{11} {2}{2}{11}{11} {2}{2}{2}{2}{11} {1}{1}{1}{1}{1}{1} The a(1) = 1 through a(7) = 5 factorizations: 2 4 8 16 32 64 128 2*2 3*4 4*4 3*4*4 8*8 3*4*4*4 2*2*2 3*3*4 3*3*3*4 9*16 3*3*3*4*4 2*2*2*2 2*2*2*2*2 4*4*4 3*3*3*3*3*4 3*3*4*4 2*2*2*2*2*2*2 3*3*3*3*4 2*2*2*2*2*2
Links
- Christian Sievers, Table of n, a(n) for n = 0..25000
Crossrefs
Without a common sum we have A055887.
Twice-partitions of this type are counted by A279789.
Without constant blocks we have A326518.
For distinct block-sums and strict blocks we have A381718.
Factorizations of this type are counted by A381995.
For distinct instead of equal block-sums we have A382203.
For strict instead of constant blocks we have A382429.
A089259 counts set multipartitions of integer partitions.
Programs
-
Mathematica
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]]; Table[Length[Join@@(Select[mps[#],SameQ@@Total/@#&&And@@SameQ@@@#&]&/@allnorm[n])],{n,0,5}]
-
PARI
h(s,x)=my(t=0,p=1,k=1);while(s%k==0,p*=1/(1-x^(s/k))-1;t+=p;k+=1);t lista(n)=Vec(1+sum(s=1,n,h(s,x+O(x*x^n)))) \\ Christian Sievers, Apr 05 2025
Formula
G.f.: 1 + Sum_{s>=1} Sum_{k=1..A055874(s)} Product_{v=1..k} (1/(1-x^(s/v)) - 1). - Christian Sievers, Apr 05 2025
Extensions
Terms a(16) and beyond from Christian Sievers, Apr 04 2025
Comments