This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382209 #102 May 22 2025 05:18:59 %S A382209 90,136890,197402490,284654260890,410471246808090,591899253243012090, %T A382209 853518312705176632890,1230772815021611461622490, %U A382209 1774773545742851022483004890,2559222222188376152809031436090,3690396669622092669499600847844090,5321549438372835441042271613559748890 %N A382209 Numbers k such that 10+k and 10*k are perfect squares. %C A382209 The limit of a(n+1)/a(n) is 1441.99930651839... = 721+228*sqrt(10) = (19+6*sqrt(10))^2. %C A382209 If 10*A158490(n) is a perfect square, then A158490(n) is a term. %H A382209 Emilio Martín, <a href="/A382209/b382209.txt">Table of n, a(n) for n = 1..100</a> %H A382209 Wikipedia, <a href="https://de.wikipedia.org/wiki/Pellsche_Gleichung">Negative Pell equation</a> (in German) %H A382209 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pell%27s_equation">Pell's equation</a> %H A382209 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1443,-1443,1). %F A382209 a(n) = 10 * ((1/2) * (3+sqrt(10))^(2*n-1) + (1/2) * (3-sqrt(10))^(2*n-1))^2. %F A382209 a(n) = 10 * (sinh((2n-1) * arcsinh(3)))^2. %F A382209 a(n) = 10 * A173127(n)^2 = 100 * A097315(n)^2 - 10 (negative Pell's equation solutions). %F A382209 a(n+2) = 1442 * a(n+1) - a(n) + 7200. %F A382209 G.f.: 90*(1 + 78*x + x^2)/((1 - x)*(1 - 1442*x + x^2)). - _Stefano Spezia_, Apr 24 2025 %e A382209 90 is a term because 10+90=100 is a square and 10*90=900 is a square. %e A382209 (3,1) is a solution to x^2 - 10*y^2 = -1, from which a(n) = 100*y^2-10 = 10*x^2 = 90. %t A382209 CoefficientList[Series[ 90*(1 + 78*x + x^2)/((1 - x)*(1 - 1442*x + x^2)),{x,0,11}],x] (* or *) LinearRecurrence[{1443,-1443,1},{90,136890,197402490},12] (* _James C. McMahon_, May 08 2025 *) %o A382209 (Python) %o A382209 from itertools import islice %o A382209 def A382209_gen(): # generator of terms %o A382209 x, y = 30, 10 %o A382209 while True: %o A382209 yield x**2//10 %o A382209 x, y = x*19+y*60, x*6+y*19 %o A382209 A382209_list = list(islice(A382209_gen(),30)) # _Chai Wah Wu_, Apr 24 2025 %Y A382209 Subsequence of A158490. %Y A382209 Cf. A097315, A005667, A173127, A081071. %Y A382209 Cf. A383734 = 2*A008843 (2+k and 2*k are squares). %Y A382209 Cf. 5*A075796^2 (5+k and 5*k are squares). %Y A382209 Cf. 5*A081071 (20+k and 20*k are squares). %Y A382209 Cf. A245226 (m such that k+m and k*m are squares). %K A382209 nonn,easy %O A382209 1,1 %A A382209 _Emilio Martín_, Mar 18 2025