A382214 Number of normal multisets of size n that can be partitioned into a set of sets.
1, 1, 1, 3, 5, 11, 23, 48, 101, 210, 436, 894
Offset: 0
Examples
The normal multiset {1,1,1,1,2,2,3,3,3} has partition {{1},{3},{1,2},{1,3},{1,2,3}}, so is counted under a(9). The a(1) = 1 through a(5) = 11 multisets: {1} {1,2} {1,1,2} {1,1,2,2} {1,1,1,2,3} {1,2,2} {1,1,2,3} {1,1,2,2,3} {1,2,3} {1,2,2,3} {1,1,2,3,3} {1,2,3,3} {1,1,2,3,4} {1,2,3,4} {1,2,2,2,3} {1,2,2,3,3} {1,2,2,3,4} {1,2,3,3,3} {1,2,3,3,4} {1,2,3,4,4} {1,2,3,4,5}
Crossrefs
The complement is counted by A292432.
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]] /@ Subsets[Range[n-1]+1]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]& /@ sps[Range[Length[mset]]]]; Table[Length[Select[allnorm[n],Select[mps[#], UnsameQ@@#&&And@@UnsameQ@@@#&]!={}&]],{n,0,5}]
Comments