This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382216 #10 Mar 31 2025 21:55:23 %S A382216 1,1,1,3,5,11,23,48,101,208,434 %N A382216 Number of normal multisets of size n that can be partitioned into a set of sets with distinct sums. %C A382216 We call a multiset normal iff it covers an initial interval of positive integers. The size of a multiset is the number of elements, counting multiplicity. %e A382216 The multiset {1,2,2,3,3} can be partitioned into a set of sets with distinct sums in 4 ways: %e A382216 {{2,3},{1,2,3}} %e A382216 {{2},{3},{1,2,3}} %e A382216 {{2},{1,3},{2,3}} %e A382216 {{1},{2},{3},{2,3}} %e A382216 so is counted under a(5). %e A382216 The multisets counted by A382214 but not by A382216 are: %e A382216 {1,1,1,1,2,2,3,3,3} %e A382216 {1,1,2,2,2,2,3,3,3} %e A382216 The a(1) = 1 through a(5) = 11 multisets: %e A382216 {1} {1,2} {1,1,2} {1,1,2,2} {1,1,1,2,3} %e A382216 {1,2,2} {1,1,2,3} {1,1,2,2,3} %e A382216 {1,2,3} {1,2,2,3} {1,1,2,3,3} %e A382216 {1,2,3,3} {1,1,2,3,4} %e A382216 {1,2,3,4} {1,2,2,2,3} %e A382216 {1,2,2,3,3} %e A382216 {1,2,2,3,4} %e A382216 {1,2,3,3,3} %e A382216 {1,2,3,3,4} %e A382216 {1,2,3,4,4} %e A382216 {1,2,3,4,5} %t A382216 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A382216 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A382216 mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]]; %t A382216 Table[Length[Select[allnorm[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]],{n,0,5}] %Y A382216 Twice-partitions of this type are counted by A279785, without distinct sums A358914. %Y A382216 Factorizations of this type are counted by A381633, without distinct sums A050326. %Y A382216 Normal multiset partitions of this type are counted by A381718, A116539. %Y A382216 The complement is counted by A382202. %Y A382216 Without distinct sums we have A382214, complement A292432. %Y A382216 The case of a unique choice is counted by A382459, without distinct sums A382458. %Y A382216 For Heinz numbers: A293243, A381806, A382075, A382200. %Y A382216 For integer partitions: A381990, A381992, A382077, A382078. %Y A382216 Strong version: A382523, A382430, A381996, A292444. %Y A382216 Normal multiset partitions: A034691, A035310, A255906. %Y A382216 Set systems: A050342, A296120, A318361. %Y A382216 Set multipartitions: A089259, A270995, A296119, A318360. %Y A382216 Cf. A000110, A000670, A007716, A050320, A116540, A255903, A275780, A317532, A326518, A326519, A382429, A382460. %K A382216 nonn,more %O A382216 0,4 %A A382216 _Gus Wiseman_, Mar 29 2025