cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382219 Product of the largest and smallest exponents in the prime factorization of n.

This page as a plain text file.
%I A382219 #12 Mar 28 2025 08:00:20
%S A382219 1,1,1,4,1,1,1,9,4,1,1,2,1,1,1,16,1,2,1,2,1,1,1,3,4,1,9,2,1,1,1,25,1,
%T A382219 1,1,4,1,1,1,3,1,1,1,2,2,1,1,4,4,2,1,2,1,3,1,3,1,1,1,2,1,1,2,36,1,1,1,
%U A382219 2,1,1,1,6,1,1,2,2,1,1,1,4,16,1,1,2,1,1,1,3,1,2
%N A382219 Product of the largest and smallest exponents in the prime factorization of n.
%C A382219 The asymptotic density of the occurrences of k = 1, 2, ... in this sequence is 1/zeta(2) for k = 1 and 1/zeta(k+1) - 1/zeta(k) for k >= 2, and the asymptotic mean of this sequence is A033150, the same densities and mean as in A051903, since a(n) = A051903(n) for nonpowerful numbers n (A052485) whose asymptotic density is 1. - _Amiram Eldar_, Mar 28 2025
%H A382219 Amiram Eldar, <a href="/A382219/b382219.txt">Table of n, a(n) for n = 1..10000</a>
%H A382219 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F A382219 If n = Product (p_j^k_j) then a(n) = min{k_j} * max{k_j}.
%F A382219 a(n) = A051903(n) * A051904(n) for n > 1.
%t A382219 Table[Max @@ (#[[2]] & /@ FactorInteger[n]) Min @@ (#[[2]] & /@ FactorInteger[n]), {n, 90}]
%o A382219 (PARI) a(n) = if(n == 1, 1, my(e = factor(n)[,2]); vecmin(e) * vecmax(e)); \\ _Amiram Eldar_, Mar 28 2025
%Y A382219 Cf. A005361, A033150, A051903, A051904, A052485, A062977, A066048, A304233, A333352.
%K A382219 nonn
%O A382219 1,4
%A A382219 _Ilya Gutkovskiy_, Mar 19 2025