This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382226 #16 Mar 25 2025 10:16:30 %S A382226 3,439,4812191,41051,1753,75869,24359,1674289,17509,6221,771653,29863, %T A382226 6899,35353,1073239,4001,18959,1613741,1033,12077759,172433,1548149, %U A382226 364079,199,4580399,373,3847,411396253,41863,1371031,11491,135911,45707,308149,364909,176537,2089,32569961,13619,625861 %N A382226 Smallest prime in a sequence of n consecutive primes which add to a perfect cube. %C A382226 a(1) does not exist because no single prime is a perfect cube. %H A382226 David Dewan, <a href="/A382226/b382226.txt">Table of n, a(n) for n = 2..200</a> %F A382226 a(n) = { min prime(k): [ sum(j=k..k+n-1) prime(j)] in A000578 }. %e A382226 a(2)=3 : 3 + 5 = 8 = 2^3 = A382227(2). %e A382226 a(3)=439 : 439 + 443 + 449 = 1331 = 11^3 = A382227(3) = A210205(1). %e A382226 a(4)=4812191 : 4812191 + 4812193 + 4812209 + 4812239 = 19248832 = 268^3 = A382227(4) = A248587(1). %p A382226 A382226 := proc(n) %p A382226 local i,ps,fp,lp ; %p A382226 fp := 2; %p A382226 ps := add(ithprime(j),j=1..n) ; %p A382226 lp := ithprime(n); %p A382226 for i from 1 do %p A382226 if isA000578(ps) then #code in A000578 %p A382226 return fp; %p A382226 end if; %p A382226 lp := nextprime(lp) ; %p A382226 ps := ps-fp+lp ; %p A382226 fp := nextprime(fp) ; %p A382226 end do: %p A382226 end proc: %p A382226 for n from 2 do %p A382226 print(n,A382226(n)) ; %p A382226 end do: # _R. J. Mathar_, Mar 25 2025 %t A382226 a[n_]:=Do[mid=PrimePi[k^3/n]; toTest=Prime[Range[Max[mid-n, 1], mid+n]]; %t A382226 t=Total/@Partition[toTest, n, 1];pos=Position[t, k^3];If[pos!={}, Return[First[toTest[[First[pos]]]]]], {k, 2 , Infinity} ];a/@Range[2, 10] %Y A382226 Cf. A382227, A382228, A132955. %K A382226 nonn %O A382226 2,1 %A A382226 _David Dewan_, Mar 19 2025