A382231 Octagonal numbers that are the product of three distinct primes.
645, 1045, 1281, 2465, 2821, 3201, 3605, 7701, 8965, 12545, 15841, 17633, 18565, 20501, 23585, 24661, 25761, 26885, 30401, 34133, 36741, 45141, 51221, 52801, 57685, 59361, 62785, 66305, 68101, 71765, 73633, 89441, 95765, 100101, 116033, 120801, 123221, 125665, 138245
Offset: 1
Keywords
Examples
645 is a term because 645=3*5*43 is a sphenic number and is the 15th octagonal number. 1045 is a term because 1045=5*11*19 is a sphenic number and is the 19th octagonal number. 1281 is a term because 1281=3*7*61 is a sphenic number and is the 21st octagonal number.
Programs
-
Maple
N:= 10^6: # for terms <= N isoct:= proc(n) issqr(1+3*n) and sqrt(1+3*n) mod 3 = 2 end proc: P:= select(isprime,[seq(i,i=3..N/15,2)]): nP:= nops(P): R:= NULL: for i from 1 to nP while P[i]*P[i+1]*P[i+2] <= N do for j from i+1 to nP while P[i]*P[j]*P[j+1] <= N do for k from j+1 to nP do v:= P[i]*P[j]*P[k]; if v > N then break fi; if isoct(v) then R:= R,v fi; od od od: sort([R]); # Robert Israel, Mar 19 2025
-
Mathematica
Select[Table[n*(3*n-2), {n, 1, 220}], FactorInteger[#][[;;, 2]] == {1, 1, 1} &] (* Amiram Eldar, Mar 19 2025 *)
Comments