A382244 Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, n*a(n) is a triangular number (A000217).
0, 1, 3, 2, 7, 9, 6, 4, 15, 5, 12, 21, 10, 25, 27, 8, 31, 33, 35, 37, 39, 11, 24, 45, 22, 13, 30, 14, 42, 57, 26, 16, 63, 17, 67, 18, 56, 19, 75, 20, 52, 81, 28, 85, 87, 23, 51, 93, 95, 97, 99, 46, 40, 105, 60, 90, 36, 29, 66, 117, 54, 121, 69, 32, 127, 84, 58
Offset: 0
Keywords
Examples
The initial terms are: n a(n) n*a(n) -- ---- ----------------- 0 0 0 = A000217(0) 1 1 1 = A000217(1) 2 3 6 = A000217(3) 3 2 6 = A000217(3) 4 7 28 = A000217(7) 5 9 45 = A000217(9) 6 6 36 = A000217(8) 7 4 28 = A000217(7) 8 15 120 = A000217(15) 9 5 45 = A000217(9) 10 12 120 = A000217(15) 11 21 231 = A000217(21) 12 10 120 = A000217(15) 13 25 325 = A000217(25) 14 27 378 = A000217(27) 15 8 120 = A000217(15)
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
- Rémy Sigrist, PARI program
- Index entries for sequences that are permutations of the natural numbers
Programs
-
PARI
\\ See Links section.
Formula
a(n) >= A061782(n) for any n > 0.
Comments