A382251 a(n) = 7*n^3 - 6*n^2.
1, 32, 135, 352, 725, 1296, 2107, 3200, 4617, 6400, 8591, 11232, 14365, 18032, 22275, 27136, 32657, 38880, 45847, 53600, 62181, 71632, 81995, 93312, 105625, 118976, 133407, 148960, 165677, 183600, 202771, 223232, 245025, 268192, 292775, 318816, 346357, 375440, 406107, 438400, 472361
Offset: 1
Examples
For n=2, a(2) = 7*(2^3) - 6*(2^2) = 32. For n=5, a(5) = 7*(5^3) - 6*(5^2) = 725.
References
- Jejemae S. Maque, "Augmented Cubic Numbers," Undergraduate Thesis, Bukidnon State University, 2024.
Links
- Noel B. Lacpao, Table of n, a(n) for n = 1..1000
- Noel B. Lacpao, Illustration of the augmented cubic number structure for n=2
- Noel B. Lacpao, Illustration of the augmented cubic number structure for n=3
- Noel B. Lacpao, Colab notebook for generating augmented cubic numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Maple
seq(7*n^3 - 6*n^2, n=1..20);
-
Mathematica
Table[7 n^3 - 6 n^2, {n, 1, 20}]
-
Python
[7*n**3 - 6*n**2 for n in range(1, 21)]
Formula
a(n) = 7*n^3 - 6*n^2.
G.f.: x*(1 + 28*x + 13*x^2) / (1-x)^4.
Comments