This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382253 #7 Apr 16 2025 10:25:24 %S A382253 1,1,1,1,1,5,1,1,7,5,1,1,3,13,17,1,1,11,2,7,13,1,1,13,19,5,31,37,1,1, %T A382253 5,11,29,3,43,25,1,1,17,25,11,41,7,19,65,1,1,19,7,37,23,11,4,73,41,1, %U A382253 1,7,31,41,17,61,71,9,91,101,1 %N A382253 Triangle T(n,k) = denominator of (n+k)/(1+n*k), 0 <= k <= n >= 0, read by rows. %C A382253 Since the operation n @ k := (n + k)/(1 + n*k) is commutative, it is sufficient to list only the lower half of the "multiplication table", which would otherwise be an infinite square array. This triangle lists the denominators, and A382252 lists the numerators. %F A382253 T(n,k) = T(k,n) for all n, k >= 0; %F A382253 T(n,0) = T(0,n) = T(n,1) = T(1,n) = 1 for all n >= 0; %F A382253 T(n,n) = denominator(2*n/(1+n^2)) = numerator((1+n^2)/2) = A228564(n). %e A382253 The table for the operation n @ k := (n + k)/(1 + n*k) starts as follows: %e A382253 (0 is the neutral element for the operation: n @ 0 = n = 0 @ n, therefore the elements in row 0 and column 0 equal the column and row index.) %e A382253 0 1 2 3 4 5 6 7 8 Denominators of lower left %e A382253 1 1 1 1 1 1 1 1 1 triangle: 1; %e A382253 2 1 4/5 5/7 2/3 7/11 8/13 3/5 10/17 1, 1 %e A382253 3 1 5/7 3/5 7/13 1/2 9/19 5/11 11/25 1, 1, 5; %e A382253 4 1 2/3 7/13 8/17 3/7 2/5 11/29 4/11 1, 1, 7, 5; %e A382253 5 1 7/11 1/2 3/7 5/13 11/31 1/3 13/41 1, 1, 3, 13, 17; %e A382253 6 1 8/13 9/19 2/5 11/31 12/37 13/43 2/7 etc. %e A382253 7 1 3/5 5/11 11/29 1/3 13/43 7/25 5/19 %e A382253 8 1 10/17 11/25 4/11 13/41 2/7 5/19 16/65 %e A382253 The sequence lists the denominators of the values, where denominator(x) = 1 for integers, and only for the lower left triangle of the table, by rows. %o A382253 (PARI) apply( {A382253(n,k=-1)= k<0&& k=n-(1+n=(sqrtint(8*n+1)-1)\2)*n/2; denominator((n+k)/(1+n*k))}, [0..66]) %Y A382253 Cf. A382252, A382257; A228564 (main diagonal), A001477 (row & col. 0 of the '@' table), A000012 (row & col. 0 & 1 of the table of denominators). %K A382253 nonn,tabl,frac %O A382253 0,6 %A A382253 _M. F. Hasler_, Apr 15 2025