This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382257 #37 Apr 27 2025 14:55:15 %S A382257 0,1,9,17,125,461,1715,3217,24309,92377,352715,1352077,5200299, %T A382257 20058299,77558759,150270097,1166803109,4537567649,17672631899, %U A382257 68923264409,269128937219,1052049481859,4116715363799,16123801841549,63205303218875,247959266474051,973469712824055,3824345300380219,15033633249770519 %N A382257 a(n) is the numerator of tanh(Sum_{k=1..n-1} artanh(k/n)), where artanh is the inverse hyperbolic tangent function. %C A382257 The value of tanh(...) is always a rational number thanks to the relation tanh(x+y) = (tanh x + tanh y)/(1 + (tanh x)*tanh y). %C A382257 So actually the set of fractions {1/n, ..., (n-1)/n} is "summed up" using the operator x (+) y := (x + y)/(1 + x*y). %C A382257 By Wolstenholme's theorem; if p > 3 is prime, then p^3 divides a(p). - _Thomas Ordowski_, Apr 27 2025 %H A382257 Wikipedia contributors, <a href="https://en.wikipedia.org/wiki/Area_function_(inverse_hyperbolic_function)">Area function (inverse hyperbolic function)</a>, in: Wikipedia, the free encyclopedia. As of April 7, 2025. %F A382257 a(n) = (binomial(2n-1, n-1) - 1)/2 if n = 2^m or a(n) = binomial(2n-1, n-1) - 1 = A010763(n-1) otherwise, since tanh(Sum_{k=1..n-1} artanh(k/n)) = (binomial(2n-1, n-1) - 1)/(binomial(2n-1, n-1) + 1) reduced. - _Thomas Ordowski_, Apr 27 2025 %e A382257 For n=2, tanh(artanh(1/2)) = 1/2, so a(2) = numerator(1/2) = 1. %e A382257 For n=3, tanh(artanh(1/3) + artanh(2/3)) = (1/3 + 2/3) / (1 + 1/3 * 2/3) = 9/11, so a(3) = 9. %e A382257 Numerators of 0, 1/2, 9/11, 17/18, 125/127, 461/463, 1715/1717, 3217/3218, ... %o A382257 (Python) %o A382257 from sympy import S,expand_trig as ET %o A382257 tanh,artanh = S("tanh, artanh") %o A382257 def A382257_test(n): # for illustration only -- slow for n >= 19 %o A382257 n=S(n); return ET(tanh(sum(artanh(k/n) for k in range(1,n)))).numerator %o A382257 def A382257(n): %o A382257 s=0; i=S.One/n %o A382257 for k in range(1,n): s = (s + i*k)/(1 + s*k*i) %o A382257 return s.numerator %o A382257 (Python) %o A382257 from functools import reduce %o A382257 from fractions import Fraction %o A382257 def A382257(n): return reduce(lambda x,y: Fraction(x+y,1+x*y),(Fraction(i,n) for i in range(1,n)),0).numerator # _Chai Wah Wu_, Apr 23 2025 %o A382257 (PARI) apply( {A382257(n)=my(s=0); for(i=1, n-1, s=(s*n+i)/(n+s*i));numerator(s)}, [1..30]) %Y A382257 Cf. A001700, A010763, A034602, A383431 (denominators). %K A382257 nonn,frac %O A382257 1,3 %A A382257 _M. F. Hasler_, Apr 15 2025