cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382261 a(n) = floor(x^(phi^n)), where phi = (1+sqrt(5))/2 and x is the constant A382260.

This page as a plain text file.
%I A382261 #13 Mar 27 2025 18:37:49
%S A382261 2,3,7,23,163,3803,620549,2359981439,1464484123012601,
%T A382261 3456155348019933976288373,5061484633840283809323162088349619180781,
%U A382261 17493277186167814180104995425523045477935447066389138909089293633
%N A382261 a(n) = floor(x^(phi^n)), where phi = (1+sqrt(5))/2 and x is the constant A382260.
%C A382261 Conjecture: All terms are prime numbers. For details see A382260.
%F A382261 nextprime(a(n-2)*a(n-1)) <= a(n) < nextprime((a(n-2)+1)*a(n-1)).
%Y A382261 Cf. A001622, A059784, A051254, A243358, A382260. A090253.
%Y A382261 Cf. A090253 ( similar growth ).
%K A382261 nonn
%O A382261 1,1
%A A382261 _Thomas Scheuerle_, Mar 19 2025