This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382263 #11 Mar 21 2025 14:39:07 %S A382263 0,1,3,2,7,6,5,4,17,16,15,12,11,14,13,10,9,8,43,42,41,37,40,39,38,36, %T A382263 35,28,27,34,33,32,31,30,29,26,25,21,24,23,22,20,19,18,119,118,117, %U A382263 112,116,114,113,111,110,95,115,109,108,99,107,97,96,106,105,104 %N A382263 a(n) is the unique k such that the factorial base expansion of A382262(n) is, when read from right to left, the ordinal transform of that of A382262(k). %C A382263 A self-inverse permutation of the nonnegative integers with only two fixed points: a(0) = 0 and a(1) = 1. %H A382263 Rémy Sigrist, <a href="/A382263/b382263.txt">Table of n, a(n) for n = 0..13231</a> %H A382263 Rémy Sigrist, <a href="/A382263/a382263.gp.txt">PARI program</a> %H A382263 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a> %H A382263 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A382263 A382269(A382262(a(n))) = A382262(n). %e A382263 The first terms, alongside the corresponding factorial base expansions, are: %e A382263 n a(n) fact(A382262(n)) fact(A382262(a(n))) %e A382263 -- ---- ---------------- ------------------- %e A382263 0 0 0 0 %e A382263 1 1 1 1 %e A382263 2 3 1,1 2,1 %e A382263 3 2 2,1 1,1 %e A382263 4 7 1,1,1 3,2,1 %e A382263 5 6 1,2,1 2,1,1 %e A382263 6 5 2,1,1 1,2,1 %e A382263 7 4 3,2,1 1,1,1 %e A382263 8 17 1,1,1,1 4,3,2,1 %e A382263 9 16 1,1,2,1 3,2,1,1 %e A382263 10 15 1,2,1,1 3,1,2,1 %e A382263 11 12 1,3,2,1 2,1,1,1 %e A382263 12 11 2,1,1,1 1,3,2,1 %e A382263 13 14 2,1,2,1 2,2,1,1 %e A382263 14 13 2,2,1,1 2,1,2,1 %e A382263 15 10 3,1,2,1 1,2,1,1 %e A382263 16 9 3,2,1,1 1,1,2,1 %e A382263 17 8 4,3,2,1 1,1,1,1 %o A382263 (PARI) See Links section. %Y A382263 Cf. A382262, A382269. %K A382263 nonn,base %O A382263 0,3 %A A382263 _Rémy Sigrist_, Mar 19 2025