A382268 Numbers k such that a right triangle can be formed from a chain of linked rods of lengths 1, 2, 3, ..., k, with the perimeter equal to the total length.
15, 20, 24, 35, 39, 44, 48, 55, 56, 63, 75, 76, 80, 84, 91, 95, 99, 104, 111, 119, 120, 132, 135, 140, 143, 144, 152, 155, 168, 175, 176, 187, 188, 195, 203, 207, 215, 216, 219, 224, 252, 259, 260, 264, 272, 275, 279, 287, 288, 296, 299, 308, 315, 320, 324, 335, 351, 360
Offset: 1
Keywords
Examples
The first triangle is when k = 15. The segments are [6+7+8+9+10] [11+12+13+14] [15+1+2+3+4+5]. The sums of the segments are (40, 50, 30), which is 10 times the primitive right triangle (3, 4, 5). The second term, k = 20, corresponds to 5 distinct solutions: S1 = {18, 16, 9}: a = 9+...+1 + 20+19 = 84, b = 18+17 = 35, c = 16+...+10 = 91, S2 = {17, 11, 3}: a = 20+19+18 + 3+2+1 = 63, c = 17+...+12 = 87, b = 11+...+4 = 60, S3 = {17, 11, 2}: a = 20+19+18 + 2+1 = 60, c = 17+...+12 = 87, b = 11+...+3 = 63, S4 = {16, 9, 4}: a = 20+...+17 + 4+...+1 = 84, c = 16+...+10 = 91, b = 9+...+5 = 35, S5 = {15, 8, 1}: c = 20+...+16 + 1 = 91, a = 15+...+9 = 84, b = 8+...+2 = 35. We note that S2 and S3, and S1, S4 and S5, have the same side lengths, but different decompositions.
Links
- Daniel Mondot, Table of n, a(n) for n = 1..3052
Programs
-
PARI
select( {is_A382268(n)=my(Tn=n*(n+1)\2,T1,T2,S); Tn%2==0 && is_A005279(Tn\2) && forstep(n1=n-1,sqrtint(Tn-1)+1,-1, T1=n1*(n1+1)\2; forstep(n2=n1-1,sqrtint(2*T1-Tn-1)+1,-1, T2=n2*(n2+1)\2; forstep(n3=n2-1,0,-1, #(S=Set([Tn-T1+S=n3*(n3+1)\2,T2-S,T1-T2]))>2 && S[3]^2 == S[1]^2+S[2]^2 && return(S))))}, [1..100])\\ M. F. Hasler, Mar 22 2025
Comments