This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382279 #27 Apr 03 2025 11:40:05 %S A382279 1,3,27,891,57339,7340027,15032385531,123145302310907, %T A382279 2017612633061982203,66113130760175032991739, %U A382279 8665580274997661924293869563,4543259751217974174964184288067579,4763953136893138488487244504044754960379,9990733848941719167408001786146465954679226363 %N A382279 a(n) is the integer whose bits encode subset sums of the first n arithmetic numbers (A003601). %C A382279 Bit position 0 (which is sum 0) is the least significant bit of a(n). %C A382279 The resulting binary string is palindromic for all n. A subset sum of zero marks one end of the binary string, while the sum of the first n arithmetic numbers marks the other end. This is true for all sets of positive integers. See A368491 for the encoding applied to the first n primes. %H A382279 Alois P. Heinz, <a href="/A382279/b382279.txt">Table of n, a(n) for n = 0..65</a> %F A382279 a(n) = a(n-1) OR a(n-1)*2^A003601(n) for n>=1, a(0) = 1. %e A382279 For n = 0, there are no terms from which to calculate a subset sum. An empty array gives zero as the only possible sum. This is designated by the binary string 1. %e A382279 For n = 2, sums of 0, 1, 3, 4 are possible, yielding a binary string of 11011, which has a value of 27 in base 10. The impossibility of the sum 2 is indicated by 0 in the binary string. %e A382279 For n = 3, the arithmetic numbers are 1,3,5 and their subset sums 0, 1, 3, 4, 5, 6, 8, 9 are the positions of 1 bits in a(3) = 891. %p A382279 b:= proc(n) option remember; uses numtheory; local k; for k from 1+ %p A382279 `if`(n=1, 0, b(n-1)) while irem(sigma(k), tau(k))>0 do od; k %p A382279 end: %p A382279 a:= proc(n) option remember; `if`(n=0, 1, %p A382279 Bits[Or](a(n-1), a(n-1)*2^b(n))) %p A382279 end: %p A382279 seq(a(n), n=0..20); # _Alois P. Heinz_, Mar 20 2025 %o A382279 (Python) %o A382279 from sympy import divisors, divisor_count %o A382279 n = 20 %o A382279 tn = [a for a in range(1, n) if not sum(divisors(a)) % divisor_count(a)] #code from A003601 %o A382279 res = 1 %o A382279 a = [] %o A382279 a.append(res) %o A382279 for v in tn: %o A382279 res = (res | (res << v)) %o A382279 a.append(res) %o A382279 print(a) %Y A382279 Cf. A003601, A368491. %K A382279 nonn,base %O A382279 0,2 %A A382279 _Yigit Oktar_, Mar 20 2025