This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382283 #6 Mar 22 2025 18:50:37 %S A382283 1,1,2,1,5,1,2,3,15,1,1,2,3,4,1,3,3,15,1,1,17,60,1,2,1,2,1,1,1,1,4,2, %T A382283 3,2,4,11,10,11,2,1,5,3,3,6,9,8,6,1,1,19,51,3,21,1,1,3,21,2,3,113,1, %U A382283 11,127,374,1,1,2,3,4,1,1,2,3,4,1,1,2,1,1,1,2 %N A382283 Number of square roots of connected square graphs in the order listed in A382194. %C A382283 A382194 lists all connected graphs that are squares, encoded as in A076184. a(n) is the number of unlabeled graphs whose squares are isomorphic to the n-th graph in A382194. %H A382283 Pontus von Brömssen, <a href="/A382283/b382283.txt">Table of n, a(n) for n = 1..1580</a> (for graphs on up to 9 vertices) %H A382283 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphSquare.html">Graph Square</a>. %H A382283 Wikipedia, <a href="https://en.wikipedia.org/wiki/Graph_power">Graph power</a>. %e A382283 As an irregular triangle, where row n >= 1 contains A382180(n) terms: %e A382283 1; %e A382283 1; %e A382283 2; %e A382283 1, 5; %e A382283 1, 2, 3, 15; %e A382283 1, 1, 2, 3, 4, 1, 3, 3, 15, 1, 1, 17, 60; %e A382283 ... %e A382283 The last term on row n equals A241706(n)+1, the number of graphs whose square is the complete graph on n vertices. %Y A382283 Cf. A076184, A241706, A382180, A382194. %K A382283 nonn,tabf %O A382283 1,3 %A A382283 _Pontus von Brömssen_, Mar 22 2025