This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382293 #7 Mar 21 2025 10:04:33 %S A382293 1,8,128,3456,279936,34992000,8957952000,3072577536000, %T A382293 1920360960000000,2556000437760000000,5615532961758720000000, %U A382293 13482894641182686720000000,66241461372130539855360000000,434610228062548471991016960000000,2980991554281019969386385328640000000 %N A382293 a(n) is the least number k such that A382290(k) = n. %C A382293 Also, a(n) is the least number k such that A382291(k) = 2^n. %C A382293 Cumulative products of the sorted sequence that contains 1 and prime powers of the form p^3 and p^(2^k) with k >= 2. %H A382293 Amiram Eldar, <a href="/A382293/b382293.txt">Table of n, a(n) for n = 0..150</a> %t A382293 seq[max_] := Module[{t = {}, k = 3, lim}, While[lim = max^(1/k); lim > 2, t = Join[t, Prime[Range[PrimePi[lim]]]^k]; If[k == 3, k = 4, k *= 2]]; t = Sort[t]; FoldList[Times, 1, t]]; seq[10^4] (* after _T. D. Noe_ at A050376 *) %o A382293 (PARI) list(mx) = {my(t = [1], k =3, lim); while(lim = mx^(1/k); lim > 2, t = concat(t, apply(x -> x^k, primes(primepi(lim)))); if(k == 3, k = 4, k *= 2)); t = vecsort(t); vector(#t, n, prod(i = 1, n, t[i]));} %Y A382293 Subsequence of A025487. %Y A382293 Cf. A037992, A050376, A382290, A382291. %K A382293 nonn %O A382293 0,2 %A A382293 _Amiram Eldar_, Mar 21 2025