cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382294 Decimal expansion of the asymptotic mean of the excess of the number of Fermi-Dirac factors of k over the number of distinct prime factors of k when k runs over the positive integers.

This page as a plain text file.
%I A382294 #7 Mar 21 2025 10:04:41
%S A382294 1,3,6,0,5,4,4,7,0,4,9,6,2,2,8,3,6,5,2,2,9,9,8,9,2,6,3,8,3,7,6,8,9,9,
%T A382294 7,6,1,6,5,8,2,4,6,9,0,8,3,7,8,3,9,7,1,0,3,6,8,9,3,4,2,7,8,7,1,5,6,1,
%U A382294 4,9,7,6,6,7,4,9,7,7,1,7,9,1,4,6,0,6,5,2,2,8,2,9,7,5,0,8,5,4,1,4,8,7,3,5,9
%N A382294 Decimal expansion of the asymptotic mean of the excess of the number of Fermi-Dirac factors of k over the number of distinct prime factors of k when k runs over the positive integers.
%C A382294 Analogous to Sum_{p prime} 1/(p*(p-1)) (A136141), which is the asymptotic mean of the excess of the number of prime factors over the number of distinct prime factors (A046660).
%F A382294 Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A382290(k).
%F A382294 Equal Sum_{k>=3} A088705(k) * P(k), where P(s) is the prime zeta function.
%F A382294 Equals Sum_{p prime} f(1/p), where f(x) = -x + Sum_{k>=0} x^(2^k)/(1+x^(2^k)).
%e A382294 0.13605447049622836522998926383768997616582469083783...
%t A382294 s[n_] := Module[{c = CoefficientList[Series[-x + Sum[x^(2^k)/(1+x^(2^k)), {k, 0, n}],{x, 0, 2^n}], x]},Sum[c[[i]] * PrimeZetaP[i-1], {i, 3, Length[c]-2}]]; RealDigits[s[10], 10, 120][[1]]
%o A382294 (PARI) default(realprecision, 120); default(parisize, 10000000);
%o A382294 f(x, n) = -x + sum(k = 0, n, x^(2^k)/(1+x^(2^k)));
%o A382294 sumeulerrat(f(1/p, 8))
%Y A382294 Cf. A001221, A046660, A064547, A088705, A136141, A382290.
%K A382294 nonn,cons
%O A382294 0,2
%A A382294 _Amiram Eldar_, Mar 21 2025