cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382295 Decimal expansion of the asymptotic mean of the number of ways to factor k into "Fermi-Dirac primes" when k runs over the positive integers.

This page as a plain text file.
%I A382295 #5 Mar 21 2025 10:04:52
%S A382295 1,7,8,7,6,3,6,8,0,0,1,6,9,4,4,5,6,6,6,9,8,8,6,3,2,9,3,9,4,8,9,4,5,9,
%T A382295 8,8,1,4,6,5,9,0,0,4,6,1,3,7,0,0,2,2,6,4,1,1,6,7,3,2,9,5,4,5,6,6,6,3,
%U A382295 7,5,1,3,9,5,4,3,4,0,2,5,1,5,5,1,5,5,0,8,8,3,3,3,5,8,7,1,3,7,5,6,1,5,6,0,4
%N A382295 Decimal expansion of the asymptotic mean of the number of ways to factor k into "Fermi-Dirac primes" when k runs over the positive integers.
%F A382295 Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A050377(k).
%F A382295 Equals Product_{p prime} f(1/p), where f(x) = (1-x) / Product_{k>=0} (1 - x^(2^k)).
%e A382295 1.78763680016944566698863293948945988146590046137002...
%t A382295 $MaxExtraPrecision = 1500; m = 1500; em = 50; f[x_] := Log[1-x] - Sum[Log[1-x^(2^k)], {k, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
%o A382295 (PARI) default(realprecision, 120); default(parisize, 10000000);
%o A382295 f(x, n) = (1-x) / prod(k = 0, n, (1 - x^(2^k)));
%o A382295 prodeulerrat(f(1/p, 10))
%Y A382295 Cf. A005117 (positions of 1's in A050377), A050377, A082293 (positions of 2's), A330687 (positions of records).
%K A382295 nonn,cons
%O A382295 1,2
%A A382295 _Amiram Eldar_, Mar 21 2025