cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382297 Indices of right triangles in A381337.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 12, 14, 17, 23, 28, 31, 34, 35, 49, 51, 62, 69, 71, 73, 77, 85, 93, 97, 98, 102, 119, 127, 142, 161, 170, 194, 196, 199, 223, 233, 238, 241, 245, 279, 281, 287, 291, 337, 357, 381, 388, 391, 398, 439, 446, 449, 476, 482, 483, 511, 521, 527, 562
Offset: 1

Views

Author

Felix Huber, Mar 26 2025

Keywords

Comments

A381336(a(n)) is the short leg, a(n) + A381336(a(n)) is the long leg and A381337(a(n)) is the hypotenuse.

Examples

			12 is in the sequence because A381336(12)^2 + (A381336(12) + 12)^2 = 36^2 + 48^2 = 60^2 = A381337(12)^2.
		

Crossrefs

Programs

  • Maple
    isA382297:=proc(n)
        local k,c,s;
        for k do
            for c from k+n to 2*k+n-1 do
                s:=(n+2*k+c)/2;
                if issqr(s*(s-k)*(s-k-n)*(s-c)) then
                    return [k,n+k,c];
                fi
            od
        od;
    end proc;
    A382297:=proc(n)
        option remember;
        local a;
        if n=1 then
            1
        else
            for a from procname(n-1)+1 do
                if isA382297(a)[1]^2+isA382297(a)[2]^2=isA382297(a)[3]^2 then
                    return a
                fi
            od
        fi;
    end proc;
    seq(A382297(n),n=1..59);

Formula

A381336(a(n))^2 + (A381336(a(n)) + a(n))^2 = A381337(a(n))^2.